Advertisement

Exploiting Local Persistency for Reduced State Space Generation

  • Kamel Barkaoui
  • Hanifa BouchenebEmail author
  • Zhiwu Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11181)

Abstract

This paper deals with the partial order techniques of Petri nets, based on persistent sets and step graphs. To take advantage of the strengths of each method, it proposes the persistent step sets as a parametric combination of the both methods. The persistent step sets method allows to fix, for each marking, the set of transitions to be covered by the selected steps and then to control their maximal length and number. Moreover, this persistent step selective search preserves, at least, deadlocks of Petri nets.

This paper also provides two practical computation procedures of the persistent step sets based on the strong-persistent sets [5, 10] and the persistent sets, respectively.

Keywords

Petri nets Reachability analysis State explosion problem Persistent sets Partial order techniques Step graphs 

References

  1. 1.
    Barkaoui, K., Couvreur, J.-M., Klai, K.: On the equivalence between liveness and deadlock-freeness in Petri nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 90–107. Springer, Heidelberg (2005).  https://doi.org/10.1007/11494744_7CrossRefzbMATHGoogle Scholar
  2. 2.
    Barkaoui, K., Pradat-Peyre, J.-F.: On liveness and controlled siphons in Petri nets. In: Billington, J., Reisig, W. (eds.) ICATPN 1996. LNCS, vol. 1091, pp. 57–72. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-61363-3_4CrossRefGoogle Scholar
  3. 3.
    Chen, Y.F., Li, Z.W., Barkaoui, K.: New Petri net structure and its application to optimal supervisory control: Interval inhibitor arcs. IEEE Trans. Syst. Man Cybern. 44(10), 1384–1400 (2014)CrossRefGoogle Scholar
  4. 4.
    Desel, J., Juhás, G.: “What is a Petri net?” Informal answers for the informed reader. In: Ehrig, H., Padberg, J., Juhás, G., Rozenberg, G. (eds.) Unifying Petri Nets. LNCS, vol. 2128, pp. 1–25. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45541-8_1CrossRefzbMATHGoogle Scholar
  5. 5.
    Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Systems. LNCS, vol. 1032. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-60761-7CrossRefzbMATHGoogle Scholar
  6. 6.
    Junttila, T.: On the symmetry reduction method for Petri nets and similar formalisms. Ph.D. dissertation, Helsinki University of Technology, Espoo, Finland (2005)Google Scholar
  7. 7.
    Li, Z.W., Zhao, M.: On controllability of dependent siphons for deadlock prevention in generalized Petri nets. IEEE Trans. Syst. Man Cybern. 38(2), 369–384 (2008)CrossRefGoogle Scholar
  8. 8.
    Peled, D.: All from one, one for all: on model checking using representatives. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-56922-7_34CrossRefGoogle Scholar
  9. 9.
    Peled, D., Wilke, T.: Stutter-invariant temporal properties are expressible without the next-time operator. Inf. Process. Lett. 63(5), 243–246 (1997)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ribet, P.-O., çois, F., Berthomieu, B.: On combining the persistent sets method with the covering steps graph method. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 344–359. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36135-9_22CrossRefGoogle Scholar
  11. 11.
    Valmari, A.: A stubborn attack on state explosion. Form. Methods Syst. Des. 1(4), 297–322 (1992)CrossRefGoogle Scholar
  12. 12.
    Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998).  https://doi.org/10.1007/3-540-65306-6_21CrossRefGoogle Scholar
  13. 13.
    Valmari, A., Hansen, H.: Can stubborn sets be optimal? Fundam. Inform. 113(3–4), 377–397 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Vernadat, F., Azéma, P., Michel, F.: Covering step graph. In: Billington, J., Reisig, W. (eds.) ICATPN 1996. LNCS, vol. 1091, pp. 516–535. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-61363-3_28CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratoire CEDRIC, Conservatoire National des Arts et MétiersParis Cedex 03France
  2. 2.Laboratoire VeriForm, Department of Computer Engineering and Software EngineeringÉcole Polytechnique de MontréalMontréalCanada
  3. 3.Institute of Systems EngineeringMacau University of Science and TechnologyTaipaMacau
  4. 4.School of Electro-Mechanical EngineeringXidian UniversityXi’anChina

Personalised recommendations