Numerical Simulation of Wear-Related Problems in a Blast Furnace Runner

  • Patricia Barral
  • Begoña Nicolás
  • Luis Javier Pérez-Pérez
  • Peregrina QuintelaEmail author
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 18)


Two hydrodynamic problems related to the wear suffered by refractory linings at blast furnace runners during a stage of the steelmaking process are proposed. A thermo-hydrodynamic model is posed with the scope of finding the position of the critical isotherms inside the solid refractory layers. The computational domain is based on a runner at the ArcelorMittal Company, where the three-phase flow of slag, hot metal and air is solved using the SST K − ω turbulence model and the VOF method. Radiation heat transfer is accounted for using the S2S model. The impact of a jet of hot metal falling from the blast furnace on the runner is also analyzed using a similar hydrodynamic model. Shear stress, which is the main driving factor of the erosion rate, is computed at the impinging zone. Both models are solved using ANSYS Fluent.


Steelmaking Simulation Heat transfer Radiation Hydrodynamics Multiphase Free surface Jet impact 



This work was partially supported by FEDER and Xunta de Galicia funds under the ED431C 2017/60 grant, by the Ministry of Economy, Industry and Competitiveness through the Plan Nacional de I+D+i (MTM2015-68275-R), the grant BES-2016-077228 and by the Vicerreitoría de Investigación e Innovación da Universidade de Santiago de Compostela via the Programa de Becas de Colaboración en Investigación 2016.

The authors would also like to acknowledge ArcelorMittal and personally thank Alejandro Lengomín and Sara Vázquez for their invaluable help to understand the phenomena in the complex industrial process that was modeled in this work.


  1. 1.
    ANSYS, Inc.: ANSYS Fluent, Release 15.0, Theory Guide. ANSYS, Inc., Canonsburg (2013)Google Scholar
  2. 2.
    Ariathurai, R., Arulanandan, K.: Erosion rates of cohesive soils. J. Hydraul. Div. 104, 279–283 (1978)Google Scholar
  3. 3.
    Beltaos, S., Rajaratnam, N.: Impinging circular turbulent jets. J. Hydraul. Div. ASCE, 100, 1313–1328 (1974)Google Scholar
  4. 4.
    Brackbill, J., Kothe, D., Zemach, C.:A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hirt, C., Nichols, B.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)CrossRefGoogle Scholar
  6. 6.
    Howell, J., Menguc, M., Siegel, R.: Thermal Radiation Heat Transfer. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  7. 7.
    Khodabandeh, E., Ghaderi, M., Afzalabadi, A., Rouboa, A.: Parametric study of heat transfer in an electric arc furnace and cooling system. Appl. Therm. Eng. 123, 1190–1200 (2017)CrossRefGoogle Scholar
  8. 8.
    Kim, H., Ozturk, B.: Slag-metal separation in the blast furnace trough. ISIJ Int. 38, 430–439 (1998)CrossRefGoogle Scholar
  9. 9.
    Lee, W.E., Vieira, W., Zhang, S., Ahari, K.G., Sarpoolaky, H., Parr, C.: Castable refractory concretes. Int. Mater. Rev. 46, 145–167 (2001)CrossRefGoogle Scholar
  10. 10.
    Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)CrossRefGoogle Scholar
  11. 11.
    Prompt, N., Ouedraogo, E.: High temperature mechanical characterisation of an alumina refractory concrete for Blast Furnace main trough: Part I. General context. J. Eur. Ceram. Soc. 28, 2859–2865 (2008)CrossRefGoogle Scholar
  12. 12.
    Rezende, P., Vicente, R., da Silva, A., Carvalho, F., Maliska, C.: The blast furnace trough two-phase flow and its influence in the refractory lining wear: mathematical modeling and numerical simulation. In: Proceedings of 19th International Congress of Mechanical Engineering, Brasilia, DF (2007)Google Scholar
  13. 13.
    Seoane, M.: Modelización de Fenómenos Térmicos que Afectan al Canal Principal del Horno Alto. Master’s Thesis, Master in Industrial Mathematics, Universidade de Santiago de Compostela (2016)Google Scholar
  14. 14.
    Tryggvason, G., Scardovelli, R., Zaleski, S.: Direct Numerical Simulation of Gas–Liquid Multiphase Flows. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  15. 15.
    Vázquez-Fernández, S.: Modelización Matemática y Simulación Numérica de la Transferencia de Calor de una ruta de Horno Alto. Master’s Thesis, Master in Industrial Mathematics, Universidade de Santiago de Compostela (2015)Google Scholar
  16. 16.
    Versteeg, K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education, London (2007)Google Scholar
  17. 17.
    Wilcox, D.: Turbulence Modeling for CFD. DCW Industries, La Canada (1998)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Patricia Barral
    • 1
    • 2
  • Begoña Nicolás
    • 1
  • Luis Javier Pérez-Pérez
    • 1
  • Peregrina Quintela
    • 1
    • 2
  1. 1.Departamento de Matemática AplicadaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Technological Institute for Industrial Mathematics (ITMATI)Santiago de CompostelaSpain

Personalised recommendations