Advertisement

Direct Synthesis of van der Waals Solids

  • Yu-Chuan Lin
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The stacking of two-dimensional layered materials such as semiconducting transition metal dichalcogenides (TMDCs), insulating hexagonal boron nitride (h-BN), and semi-metallic graphene has been theorized to produce tunable electronic and optoelectronic properties. In this chapter, we demonstrate the direct growth of MoS2, WSe2, and hBN on epitaxial graphene (EG) to form large-area van der Waal heterostructures. We reveal that the properties of the underlying graphene dictate properties of the heterostructures, where strain, wrinkling, and defects on the surface of graphene act as nucleation centers for lateral growth of the overlayer. Additionally, we demonstrate that the direct synthesis of TMDCs on EG exhibits atomically sharp interfaces. Finally, we demonstrate that direct growth of MoS2 on EG can lead to a 103 improvement in photoresponse compared to MoS2 alone.

References

  1. 1.
    Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science. 306, 666–669 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Bresnehan, M.S., et al.: Integration of hexagonal boron nitride with quasi-freestanding epitaxial graphene: toward wafer-scale, high-performance devices. ACS Nano. 6, 5234–5241 (2012)CrossRefGoogle Scholar
  3. 3.
    Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature. 499, 419–425 (2013)CrossRefGoogle Scholar
  4. 4.
    Dean, C.R., et al.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Britnell, L., et al.: Field-effect tunneling transistor based on vertical graphene heterostructures. Science. 335, 947–950 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Sanz, C., Guillén, C., Gutiérrez, M.T.: Influence of the synthesis conditions on gallium sulfide thin films prepared by modulated flux deposition. J. Phys. D. Appl. Phys. 42, 085108 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Gong, C., et al.: Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 103, 053513 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Lee, H.S., et al.: MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695–3700 (2012). https://doi.org/10.1021/nl301485q ADSCrossRefGoogle Scholar
  9. 9.
    Pu, J., et al.: Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Wang, J.-Z., et al.: Development of MoS2-CNT composite thin film from layered MoS2 for lithium batteries. Adv. Energy Mater. 3, 798–805 (2013)CrossRefGoogle Scholar
  12. 12.
    Yan, K., Peng, H., Zhou, Y., Li, H., Liu, Z.: Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition. Nano Lett. 11, 1106–1110 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Dang, W., Peng, H., Li, H., Wang, P., Liu, Z.: Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano Lett. 10, 2870–2876 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Liu, Z., et al.: Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett. 11, 2032–2037 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Shi, Y., et al.: Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784–2791 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Kubota, Y., Watanabe, K., Tsuda, O., Taniguchi, T.: Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science. 317, 932–934 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Gorbachev, R.V., et al.: Strong coulomb drag and broken symmetry in double-layer graphene. Nat. Phys. 8, 896–901 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Haigh, S.J., et al.: Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A.A., Starke, U.: Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 103, 246804 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Lin, Y.-C., et al.: Graphene annealing: how clean can it be? Nano Lett. 12, 414–419 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Robinson, J.A., et al.: Epitaxial graphene transistors: enhancing performance via hydrogen intercalation. Nano Lett. 11, 3875–3880 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Perea-López, N., et al.: Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 23, 5511–5517 (2013)CrossRefGoogle Scholar
  24. 24.
    Robinson, J.A., et al.: Contacting graphene. Appl. Phys. Lett. 98, 053103 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Robinson, J.A., Puls, C.P., Staley, N.E., Stitt, J.P., Fanton, M.A.: Raman topography and strain uniformity of large-area epitaxial graphene. Nano Lett. 9, 964–968 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Wilson, J.A., Yoffe, A.D.: The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969)ADSCrossRefGoogle Scholar
  27. 27.
    Koma, A.: Van der Waals epitaxy – a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films. 216, 72–76 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    Röhrl, J., et al.: Raman spectra of epitaxial graphene on SiC(0001). Appl. Phys. Lett. 92, 201918 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Lin, Y.-C., et al.: Direct synthesis of van der Waals solids. ACS Nano. 8, 3715–3723 (2014)CrossRefGoogle Scholar
  30. 30.
    Choi, J.S., et al.: Friction anisotropy-driven domain imaging on exfoliated monolayer graphene. Science. 333, 607–610 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Bissett, M.A., Konabe, S., Okada, S., Tsuji, M., Ago, H.: Enhanced chemical reactivity of graphene induced by mechanical strain. ACS Nano. 7, 10335–10343 (2013)CrossRefGoogle Scholar
  32. 32.
    Lee, C., et al.: Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano. 4, 2695–2700 (2010)CrossRefGoogle Scholar
  33. 33.
    Gong, C., et al.: Metal contacts on physical vapor deposited monolayer MoS2. ACS Nano. 7, 11350–11357 (2013)CrossRefGoogle Scholar
  34. 34.
    Baskaran, A., Smereka, P.: Mechanisms of Stranski-Krastanov growth. J. Appl. Phys. 111, 044321 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Yin, Z., et al.: Single-layer MoS2 phototransistors. ACS Nano. 6, 74–80 (2012)Google Scholar
  36. 36.
    Tang, S., et al.: Nucleation and growth of single crystal graphene on hexagonal boron nitride. Carbon. 50, 329–331 (2012)CrossRefGoogle Scholar
  37. 37.
    Ki K., K., et al.: Enhancing the conductivity of transparent graphene films via doping. Nanotechnology 21, 285205 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    Li, Q., et al.: Polycrystalline molybdenum disulfide (2H-MoS2) Nano- and Microribbons by electrochemical/chemical synthesis. Nano Lett. 4, 277–281 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    Zhang, W., et al.: Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Sci. Rep. 4, 3826 (2014)Google Scholar
  40. 40.
    Das, S., Appenzeller, J.: Screening and interlayer coupling in multilayer MoS2. Phys. Status Solidi RRL 7, 168–273 (2013)Google Scholar
  41. 41.
    Perea-López, N. et al.: Photosensor Device Based on Few-Layered WS2 Films Adv. Func. Mater. 23, 5511–5517 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yu-Chuan Lin
    • 1
  1. 1.Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations