Advertisement

Properties of Atomically Thin WSe2 Grown Via Metal-Organic Chemical Vapor Deposition

  • Yu-Chuan Lin
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Two-dimensional tungsten diselenide (WSe2) is of interest for the next-generation electronic and optoelectronic devices due to its bandgap of 1.65 eV and also its excellent transport properties. However, technologies based on 2D WSe2 cannot be realized without a scalable synthesis process. The first part of this chapter focuses on the scalable synthesis for large-area, mono, and few-layer WSe2 via metal organic chemical vapor deposition (MOCVD) using tungsten hexacarbonyl (W(CO)6) and dimethylselenium ((CH3)2Se). In addition to the excellent scalability of production, this technique allows for the precise control of vapor-phase chemistry, which is not obtainable though the physical vapor reaction using powder precursors. Growth parameters such as temperature, pressure, Se to W ratio, and selection of the substrates for the growth play important roles on the resultant structure. With optimized conditions, domain size >8 μm is yielded.

References

  1. 1.
    Boscher, N.D., Blackman, C.S., Carmalt, C.J., Parkin, I.P., Prieto, a.G.: Atmospheric pressure chemical vapour deposition of vanadium diselenide thin films. Appl. Surf. Sci. 253, 6041–6046 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Chung, J.-W., Dai, Z.R., Ohuchi, F.S.: WS2 thin films by metal organic chemical vapor deposition. J. Cryst. Growth. 186, 137–150 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    Hofmann, W.K.: Thin films of molybdenum and tungsten disulphides by metal organic chemical vapour deposition. J. Mater. Sci. 23, 3981–3986 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    Boscher, N.D., Carmalt, C.J., Palgrave, R.G., Gil-Tomas, J.J., Parkin, I.P.: Atmospheric pressure CVD of molybdenum Diselenide films on glass. Chem. Vap. Depos. 12, 692–698 (2006)CrossRefGoogle Scholar
  5. 5.
    Carmalt, C.J., Parkin, I.P., Peters, E.S.: Atmospheric pressure chemical vapour deposition of WS2 thin films on glass. Polyhedron. 22, 1499–1505 (2003)CrossRefGoogle Scholar
  6. 6.
    Imanishi, N.: Synthesis of MoS2 thin film by chemical vapor deposition method and discharge characteristics as a cathode of the Lithium secondary battery. J. Electrochem. Soc. 139, 2082 (1992)CrossRefGoogle Scholar
  7. 7.
    Lee, Y.-H., et al.: Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 13, 1852–1857 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Schmidt, H., et al.: Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett. 14, 1909–1913 (2014)Google Scholar
  9. 9.
    Yu, Y., et al.: Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 3, 1866 (2013)Google Scholar
  10. 10.
    Kong, D., et al.: Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13, 1341–1347 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Shim, G.W., et al.: Large-area single-layer MoSe2 and its van der Waals heterostructures. ACS Nano. 8, 6655–6662 (2014)CrossRefGoogle Scholar
  12. 12.
    Wang, X., et al.: Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano. 8, 5125–5131 ( (2014)CrossRefGoogle Scholar
  13. 13.
    Chang, Y.-H., et al.: Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano. 8, 8582–8590 (2014)CrossRefGoogle Scholar
  14. 14.
    Elías, A.L., et al.: Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers. ACS Nano. 7, 5235–5242 (2013)CrossRefGoogle Scholar
  15. 15.
    Tongay, S., et al.: Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 14, 3185–3190 (2014)Google Scholar
  16. 16.
    Grigoriev, S.N., Fominski, V.Y., Gnedovets, A.G., Romanov, R.I.: Experimental and numerical study of the chemical composition of WSex thin films obtained by pulsed laser deposition in vacuum and in a buffer gas atmosphere. Appl. Surf. Sci. 258, 7000–7007 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Bozheyev, F., Friedrich, D., Nie, M., Rengachari, M., Ellmer, K.: Preparation of highly (001)-oriented photoactive tungsten diselenide (WSe2 ) films by an amorphous solid-liquid-crystalline solid (aSLcS) rapid-crystallization process. Phys. Status Solidi. 211, 2013–2019 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Huang, J.-K., et al.: Large-area synthesis of highly crystalline WSemonolayers and device applications. ACS Nano. 8, 923–930 (2014)CrossRefGoogle Scholar
  19. 19.
    Lin, Y.-C., et al.: Direct synthesis of van der Waals solids. ACS Nano. 8, 3715–3723 (2014)CrossRefGoogle Scholar
  20. 20.
    Xu, K., et al.: Atomic-layer triangular WSe2 sheets: synthesis and layer-dependent photoluminescence property. Nanotechnology. 24, 465705 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Howsare, C.A., Weng, X., Bojan, V., Snyder, D., Robinson, J.a.: Substrate considerations for graphene synthesis on thin copper films. Nanotechnology. 23, 135601 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Glavin, N.R., et al.: Amorphous boron nitride: a universal, ultrathin dielectric for 2D Nanoelectronics. Adv. Funct. Mater. 26, 2640–2647 (2016)CrossRefGoogle Scholar
  23. 23.
    Eichfeld, S.M., et al.: Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. ACS Nano. 9, 2080–2087 (2015)CrossRefGoogle Scholar
  24. 24.
    Huang, J.-K., et al.: Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano. 8, 923–930 (2014)CrossRefGoogle Scholar
  25. 25.
    Haigh, J., Burkhardt, G., Blake, K.: Thermal decomposition of tungsten hexacarbonyl in hydrogen, the production of thin tungsten-rich layers, and their modification by plasma treatment. J. Cryst. Growth. 155, 266–271 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    Terrones, H., et al.: New first order Raman-active modes in few layered transition metal dichalcogenides. Sci. Rep. 4, 4215 (2014)CrossRefGoogle Scholar
  27. 27.
    Lin, Y.-C., et al.: Atomically thin heterostructures based on single-layer tungsten diselenide and graphene. Nano Lett. 14, 6936–6941 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    Browning, P. et al.: Large-area synthesis of WSe2 from WO3 by selenium-oxygen ion exchange. 2D Mater. 2, 1 (2014)Google Scholar
  29. 29.
    Ferralis, N., Maboudian, R., Carraro, C.: Evidence of structural strain in epitaxial graphene layers on 6H-SiC(0001). Phys. Rev. Lett. 101, 156801 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Scalise, E., Houssa, M., Pourtois, G., Afanas’ev, V., Stesmans, A.: Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 5, 43–48 (2012)CrossRefGoogle Scholar
  31. 31.
    Castellanos-Gomez, A., et al.: Local strain engineering in atomically thin MoS2. Nano Lett. 13, 5361–5366 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Das, S., Robinson, J.A., Dubey, M., Terrones, H., Terrones, M.: Beyond graphene: progress in novel two-dimensional materials and van der Waals solids. Annu. Rev. Mater. Res. 45, 1–27 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Shi, Y., Li, H., Li, L.-J.: Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 44, 2744–2756 (2015)CrossRefGoogle Scholar
  34. 34.
    Zhou, H., et al.: Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 15, 709–713 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Huang, J., et al.: Large-area synthesis of monolayer WSe2 on a SiO2/Si substrate and its device applications. Nanoscale. 7, 4193–4198 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    Campbell, P.M., et al.: Field-effect transistors based on wafer-scale, highly uniform few-layer p-type WSe2. Nanoscale. 8, 2268–2276 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Chen, Y.-Z., et al.: Ultrafast and low temperature synthesis of highly crystalline and Patternable few-layers tungsten Diselenide by laser irradiation assisted Selenization process. ACS Nano. 9, 4346–4353 (2015)CrossRefGoogle Scholar
  38. 38.
    Zhang, Y., et al.: Electronic structure, surface doping, and optical response in epitaxial WSe2 thin films. Nano Lett. 16, 2485–2491 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    Ohring, M.: Materials Science of Thin Films : Deposition and Structure. Academic, New York (2002)Google Scholar
  40. 40.
    Kang, K., et al.: High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature. 520, 656–660 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    Park, K., et al.: Uniform, large-area self-limiting layer synthesis of tungsten diselenide. 2D Mater. 014004, 3 (2016)CrossRefGoogle Scholar
  42. 42.
    Zhang, X., et al.: Influence of carbon in metalorganic chemical vapor deposition of few-layer WSe2 thin films. J. Electron. Mater. 45, 6273–6279 (2016)Google Scholar
  43. 43.
    Kim, H., Ovchinnikov, D., Deiana, D., Unuchek, D., Kis, A.: Suppressing nucleation in metalorganic chemical vapor deposition of MoS2 monolayers by alkali metal halides. Nano Lett. 17, 5056–5063 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    Lin, Y.-C., et al.: Realizing large-scale, electronic-grade two-dimensional semiconductors. ACS Nano. 12, 965–975 (2018)CrossRefGoogle Scholar
  45. 45.
    Xu, H., Fathipour, S., Kinder, E.W., Seabaugh, A.C., Fullerton-Shirey, S.K.: Reconfigurable ion gating of 2H-MoTe2 field-effect transistors using poly(ethylene oxide)-CsClO4 solid polymer electrolyte. ACS Nano. 9, 4900–4910 (2015)CrossRefGoogle Scholar
  46. 46.
    Ruzmetov, D., et al.: Vertical 2D/3D semiconductor Heterostructures based on epitaxial molybdenum Disulfide and gallium nitride. ACS Nano. 10, 3580–3588 (2016)CrossRefGoogle Scholar
  47. 47.
    Dumcenco, D., et al.: Large-area epitaxial monolayer MoS2. ACS Nano. 9, 4611–4620 (2015)CrossRefGoogle Scholar
  48. 48.
    Chen, L., et al.: Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode. ACS Nano. 9, 8368–8375 (2015)CrossRefGoogle Scholar
  49. 49.
    Nakamura, S.: The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science. 281, 956–961 (1998)CrossRefGoogle Scholar
  50. 50.
    Zhao, W., et al.: Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale. 5, 9677–9683 (2013)Google Scholar
  51. 51.
    Addou, R., Wallace, R.M.: Surface analysis of WSe2 crystals: spatial and electronic variability. ACS Appl. Mater. Interfaces. 8, 26400–26406 (2016)CrossRefGoogle Scholar
  52. 52.
    Yue, R., et al.: Nucleation and growth of WSe2: enabling large grain transition metal dichalcogenides. 2D Mater. 4, 045019 (2017)CrossRefGoogle Scholar
  53. 53.
    Nie, Y., et al.: First principles kinetic Monte Carlo study on the growth patterns of WSe2 monolayer. 2D Mater. 3, 025029 (2016)CrossRefGoogle Scholar
  54. 54.
    Nie, Y., et al.: A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides. Sci. Rep. 7, 2977 (2017)ADSCrossRefGoogle Scholar
  55. 55.
    Zhou, W., et al.: Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    Koma, A.: Van der Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth. 201–202, 236–241 (1999)ADSCrossRefGoogle Scholar
  57. 57.
    Xie, M.H., et al.: Anisotropic step-flow growth and island growth of GaN(0001) by molecular beam epitaxy. Phys. Rev. Lett. 82, 2749–2752 (1999)ADSCrossRefGoogle Scholar
  58. 58.
    McDonnell, S., et al.: HfO2 on MoS2 by atomic layer deposition: adsorption mechanisms and thickness scalability. ACS Nano. 7, 10354–10361 (2013)Google Scholar
  59. 59.
    Fathipour, S., Pandey, P., Fullerton-Shirey, S., Seabaugh, A.: Electric-double-layer doping of WSe2 field-effect transistors using polyethylene-oxide cesium perchlorate. J. Appl. Phys. 120, 234902 (2016)ADSCrossRefGoogle Scholar
  60. 60.
    Kang, J., Sarkar, D., Liu, W., Jena, D. & Banerjee, K.: A computational study of metal-contacts to beyond-graphene 2D semiconductor materials. International Electron Devices Meeting 17.4.1–17.4.4 (IEEE) (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yu-Chuan Lin
    • 1
  1. 1.Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations