Exoskeletons as Mechatronic Design Example

  • Hannes BleulerEmail author
  • Tristan Vouga
  • Amalric Ortlieb
  • Romain Baud
  • Jemina Fasola
  • Jeremy Olivier
  • Solaiman Shokur
  • Mohamed Bouri
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 65)


Exoskeletons are a perfect example of a mechatronics product. They illustrate the close integration and interdependence of mechanical design, drive train, sensors, control strategy and user interface. Recent developments of our lab will be discussed in detail. Application examples include paraplegics, amputees, muscular dystrophy patients. The motivations of the users exoskeletons are as diverse as sporting challenge, life quality improvement for daily living, rehabilitation and social integration. Links to Cognitive Neurosciences will also be briefly discussed.


Exoskeletons Mechatronics Assistive device Haptics Human-machine interface 



The authors wish to thank ASRIMM (Association Suisse Romande Intervenant contre les Maladies neuro-Musculaires), FSRMM (Fondation Suisse de Recherche sur les Maladies Musculaires), Fischer Connectors SA, Sonceboz SA, Lions Club Vevey for their support.


  1. 1.
    Olivier, J.: Development of Walk Assistive Orthoses for Elderly. PhD thesis No 6947, EPFL Lausanne (2016)Google Scholar
  2. 2.
    Shokur, S.: Virtual reality based Brain-Machine-Interface for Sensori-Motor and Social experiments with Primates (2013)Google Scholar
  3. 3.
    Young, A., Ferris, D.: State-of-the-art and future directions for robotic lower limb Exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. 99, 1–1 (2016)Google Scholar
  4. 4.
    Vouga, T., Baud, R., Fasola, J., Bouri, M., Bleuler, H.: TWIICE - A lightweight lower-limb exoskeleton for complete paraplegics. In 2017 International Conference on Rehabilitation Robotics (ICORR), pp. 1639–1645 (2017)Google Scholar
  5. 5.
    Tucker, M.R., et al.: Control strategies for active lower extremity prosthetics and orthotics: a review. J. NeuroEng. Rehabil. 12(1), 1 (2015)CrossRefGoogle Scholar
  6. 6.
    Vouga, T., et al.: EXiO - a brain-controlled Lower Limb Exoskeleton for Rhesus Macaques. IEEE Trans. Neural Syst. Rehabil. Eng. 25(2), 131–141 (2017)CrossRefGoogle Scholar
  7. 7.
    Ortlieb, A., Olivier, J., Bouri, M., Bleuler, H., Kuntzer, T.: From gait measurements to design of assistive orthoses for people with neuromuscular diseases. In 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 368–373 (2015)Google Scholar
  8. 8.
    Ortlieb, A., Bouri, M., Bleuler, H.: AUTONOMYO: Design Challenges of Lower Limb Assistive Device for Elderly People, Multiple Sclerosis and Neuromuscular Diseases. Wearable Robotics: Challenges and Trends, pp. 439–443. Springer, Cham (2017)CrossRefGoogle Scholar
  9. 9.
    Giuliani, C.A., Smith, J.L.: Stepping behaviors in chronic spinal cats with one hindlimb deafferented. J. Neurosci. 7, 2537–2546 (1987)Google Scholar
  10. 10.
    Shokur, S., et al.: Assimilation of virtual legs and perception of floor texture by complete paraplegic patients receiving artificial tactile feedback. Sci. Rep. 6, 32293 (2016)CrossRefGoogle Scholar
  11. 11.
    Donati, A.R., et al.: Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci. Rep. 6, 30383 (2016)CrossRefGoogle Scholar
  12. 12.
    Iriki, A., Tanaka, M., Iwamura, Y.: Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport 7(14), 2325–2330 (1996)CrossRefGoogle Scholar
  13. 13.
    Fuentes, C.T., Pazzaglia, M., Longo, M.R., Scivoletto, G., Haggard, P.: Body image distortions following spinal cord injury. J. Neurol. Neurosurg. Psychiatry 82, 201–207 (2013)CrossRefGoogle Scholar
  14. 14.
    Canzoneri, E., Marzolla, M., Amoresano, A., Verni, G., Serino, A.: Amputation and prosthesis implantation shape body and peripersonal space representations. Sci. Rep. 3, 1–8 (2013)CrossRefGoogle Scholar
  15. 15.
    Lenggenhager, B., Pazzaglia, M., Scivoletto, G., Molinari, M., Aglioti, S.M.: The sense of the body in individuals with spinal cord injury. PLoS ONE 7, e50757 (2012)CrossRefGoogle Scholar
  16. 16.
    Maravita, A., Husain, M., Clarke, K., Driver, J.: Reaching with a tool extends visual–tactile interactions into far space: Evidence from cross-modal extinction. Neuropsychologia 39(6), 580–585 (2001)CrossRefGoogle Scholar
  17. 17.
    Olivier, J., Ortlieb, A., Bouri, M., Bleuler, H.: Mechanisms for actuated assistive hip orthoses. J. Robot. Auton. Syst. Special issue ``Wearable Robotics”, Elsevier 73, 59–67 (2014). Scholar
  18. 18.
    Riener, R.: The Cybathlon promotes the development of assistive technology for people with physical disabilities. J. Neuroeng. Rehabil. 13, 49 (2016)CrossRefGoogle Scholar
  19. 19.
    He, Y., Eguren, D., Azorín, J.M., Grossman, R.G., Luu, T.P., Contreras-Vidal, J.-L.: Brain-machine interfaces for controlling lower-limb powered robotic systems. J. Neural Eng. 15(8), 021004 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hannes Bleuler
    • 1
    Email author
  • Tristan Vouga
    • 1
  • Amalric Ortlieb
    • 1
  • Romain Baud
    • 1
  • Jemina Fasola
    • 1
  • Jeremy Olivier
    • 1
  • Solaiman Shokur
    • 1
  • Mohamed Bouri
    • 1
  1. 1.EPFL Lausanne Robotic Systems Lab, LSROLausanneSwitzerland

Personalised recommendations