Motion Detection in the Presence of Egomotion Using the Fourier-Mellin Transform

  • Santosh ThodukaEmail author
  • Frederik Hegger
  • Gerhard K. Kraetzschmar
  • Paul G. Plöger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11175)


Vision-based motion detection, an important skill for an autonomous mobile robot operating in dynamic environments, is particularly challenging when the robot’s camera is in motion. In this paper, we use a Fourier-Mellin transform-based image registration method to compensate for camera motion before applying temporal differencing for motion detection. The approach is evaluated online as well as offline on a set of sequences recorded with a Care-O-bot 3, and compared with a feature-based method for image registration. In comparison to the feature-based method, our method performs better both in terms of robustness of the registration and the false discovery rate.


Motion detection Mobile robots Egomotion compensation Fourier-Mellin transform 



We gratefully acknowledge the continued support by the b-it Bonn-Aachen International Center for Information Technology and the Bonn-Rhein-Sieg University of Applied Sciences. We also thank Alex, Argentina and Deebul for proof-reading the paper.


  1. 1.
    Frintrop, S.: VOCUS: A Visual Attention System for Object Detection and Goal-Directed Search. LNCS (LNAI), vol. 3899. Springer, Heidelberg (2006). Scholar
  2. 2.
    Reddy, B.S., Chatterji, B.N.: An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996)CrossRefGoogle Scholar
  3. 3.
    Gehrig, S., Franke, U.: Stereovision for ADAS. In: Winner, H., Hakuli, S., Lotz, F., Singer, C. (eds.) Handbook of Driver Assistance Systems, pp. 495–524. Springer, Cham (2016). Scholar
  4. 4.
    Kim, J., Ye, G., Kim, D.: Moving object detection under free-moving camera. In: 2010 IEEE International Conference on Image Processing, pp. 4669–4672. IEEE (2010)Google Scholar
  5. 5.
    Hariyono, J., Hoang, V.-D., Jo, K.-H.: Moving object localization using optical flow for pedestrian detection from a moving vehicle. Sci. World J. 2014 (2014)Google Scholar
  6. 6.
    Badino, H., Franke, U., Rabe, C., Gehrig, S.: Stereo vision-based detection of moving objects under strong camera motion. In: Proceedings of the First International Conference on Computer Vision Theory and Applications, pp. 253–260 (2006)Google Scholar
  7. 7.
    Kim, S.W., Yun, K., Yi, K.M., Kim, S.J., Choi, J.Y.: Detection of moving objects with a moving camera using non-panoramic background model. Mach. Vis. Appl. 24(5), 1015–1028 (2013)CrossRefGoogle Scholar
  8. 8.
    Meier, D., Brockers, R., Matthies, L., Siegwart, R., Weiss, S.: Detection and characterization of moving objects with aerial vehicles using inertial-optical flow. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2473–2480. IEEE (2015)Google Scholar
  9. 9.
    Kumar, S., Odone, F., Noceti, N., Natale, L.: Object segmentation using independent motion detection. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 94–100. IEEE (2015)Google Scholar
  10. 10.
    Tokmakov, P., Alahari, K., Schmid, C.: Learning Motion Patterns in Videos. CoRR, vol. abs/1612.07217 (2016)Google Scholar
  11. 11.
    Rezazadegan, F., Shirazi, S., Upcroft, B., Milford, M.: Action Recognition: From Static Datasets to Moving Robots. CoRR, vol. abs/1701.04925 (2017)Google Scholar
  12. 12.
    Agrawal, P., Carreira, J., Malik, J.: Learning to see by moving. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 37–45 (2015)Google Scholar
  13. 13.
    Kazik, T., Göktoğan, A.H.: Visual odometry based on the Fourier-Mellin transform for a rover using a monocular ground-facing camera. In: 2011 IEEE International Conference on Mechatronics (ICM), pp. 469–474. IEEE (2011)Google Scholar
  14. 14.
    Goecke, R., Asthana, A., Pettersson, N., Petersson, L.: Visual vehicle egomotion estimation using the Fourier-Mellin transform. In: 2007 IEEE Intelligent Vehicles Symposium, pp. 450–455. IEEE (2007)Google Scholar
  15. 15.
    Sarvaiya, J.N., Patnaik, S., Bombaywala, S.: Image registration using log-polar transform and phase correlation. In: TENCON 2009-2009 IEEE Region 10 Conference, pp. 1–5. IEEE (2009)Google Scholar
  16. 16.
    Kuglin, C.D., Hines, D.C.: The phase correlation image alignment method. In: Proceeding of IEEE International Conference on Cybernetics and Society, pp. 163–165 (1975)Google Scholar
  17. 17.
    Stone, H.S., Tao, B., McGuire, M.: Analysis of image registration noise due to rotationally dependent aliasing. J. Vis. Commun. Image Represent. 14(2), 114–135 (2003)CrossRefGoogle Scholar
  18. 18.
    Lazarevic-McManus, N., Renno, J., Makris, D., Jones, G.: Designing evaluation methodologies: the case of motion detection. In: Proceedings of 9th IEEE International Workshop on PETS, pp. 23–30 (2006)Google Scholar
  19. 19.
    Geiger, A., Ziegler, J., Stiller, C.: StereoScan: dense 3D reconstruction in real-time. In: Intelligent Vehicles Symposium (IV) (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Santosh Thoduka
    • 1
    Email author
  • Frederik Hegger
    • 1
  • Gerhard K. Kraetzschmar
    • 1
  • Paul G. Plöger
    • 1
  1. 1.Department of Computer ScienceBonn-Rhein-Sieg University of Applied SciencesSankt AugustinGermany

Personalised recommendations