Advertisement

Privacy-Preserving Trade Chain Detection

  • Stefan WüllerEmail author
  • Malte Breuer
  • Ulrike Meyer
  • Susanne Wetzel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11025)

Abstract

In this paper, we present a novel multi-party protocol to facilitate the privacy-preserving detection of trade chains in the context of bartering. Our approach is to transform the parties’ private quotes into a flow network such that a minimum-cost flow in this network encodes a set of simultaneously executable trade chains for which the number of parties that can trade is maximized. At the core of our novel protocol is a newly developed privacy-preserving implementation of the cycle canceling algorithm that can be used to solve the minimum cost flow problem on encrypted flow networks.

Notes

Acknowledgments

In part, this work was supported by NSF grant #1646999 and DFG grant ME 3704/4-1. This work was carried out while one of the authors was at the National Science Foundation. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References

  1. 1.
    Abraham, D.J., Blum, A., Sandholm, T.: Clearing algorithms for barter exchange markets: enabling nationwide kidney exchanges. In: Proceedings of the 8th ACM Conference on Electronic Commerce, pp. 295–304. ACM (2007)Google Scholar
  2. 2.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Inc., Englewood Cliffs (1993)zbMATHGoogle Scholar
  3. 3.
    Aly, A., Cuvelier, E., Mawet, S., Pereira, O., Van Vyve, M.: Securely solving simple combinatorial graph problems. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 239–257. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39884-1_21CrossRefGoogle Scholar
  4. 4.
    Anderson, R., Ashlagi, I., Gamarnik, D., Kanoria, Y.: A dynamic model of barter exchange. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1925–1933 (2014)Google Scholar
  5. 5.
    Anderson, R., Ashlagi, I., Gamarnik, D., Kanoria, Y.: Efficient dynamic barter exchange. Oper. Res. 65(6), 1446–1459 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  7. 7.
    Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. Technical report (2000)Google Scholar
  8. 8.
    Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44987-6_18CrossRefGoogle Scholar
  9. 9.
    Encyclopedia Britannica. www.britannica.com
  10. 10.
    Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45472-1_7CrossRefGoogle Scholar
  11. 11.
    Klein, M.: A primal method for minimal cost flows with applications to the assignment and transportation problems. Manag. Sci. 14(3), 205–220 (1967)CrossRefGoogle Scholar
  12. 12.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48910-X_16CrossRefGoogle Scholar
  13. 13.
    Wüller, S.: Privacy-preserving electronic bartering. Ph.D. thesis, RWTH Aachen University (2018)Google Scholar
  14. 14.
    Wüller, S., Meyer, U., Wetzel, S.: Privacy-preserving multi-party bartering secure against active adversaries. In: Fifteenth Annual Conference on Privacy, Security and Trust. IEEE (2017)Google Scholar
  15. 15.
    Wüller, S., Meyer, U., Wetzel, S.: Towards privacy-preserving multi-party bartering. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 19–34. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70278-0_2CrossRefGoogle Scholar
  16. 16.
    Wüller, S., Vu, M., Meyer, U., Wetzel, S.: Using secure graph algorithms for the privacy-preserving identification of optimal bartering opportunities. In: Proceedings of the 2017 on Workshop on Privacy in the Electronic Society, pp. 123–132. ACM (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Stefan Wüller
    • 1
    • 2
    Email author
  • Malte Breuer
    • 1
  • Ulrike Meyer
    • 1
  • Susanne Wetzel
    • 2
  1. 1.RWTH Aachen UniversityAachenGermany
  2. 2.Stevens Institute of TechnologyHobokenUSA

Personalised recommendations