Advertisement

Open Problems in Membrane Computing and How Not to Solve Them

  • Alberto Leporati
  • Luca Manzoni
  • Giancarlo Mauri
  • Antonio E. Porreca
  • Claudio Zandron
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11270)

Abstract

We present some high-level open problems in the complexity theory of membrane systems, related to the actual computing power of confluence vs determinism, semi-uniformity vs uniformity, deep vs shallow membrane structures, membrane division vs internal evolution of membranes. For each of these problems we present some reasonable approaches that are, however, unable to be employed “as-is” to provide a complete solution. This will hopefully sparkle new ideas that will allow tackling these open problems.

References

  1. 1.
    Alhazov, A., Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: Space complexity equivalence of P systems with active membranes and Turing machines. Theor. Comput. Sci. 529, 69–81 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Gutiérrez–Naranjo, M.A., Pérez–Jiménez, M.J., Riscos–Núñez, A., Romero–Campero, F.J.: On the power of dissolution in P systems with active membranes. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 224–240. Springer, Heidelberg (2006).  https://doi.org/10.1007/11603047_16CrossRefzbMATHGoogle Scholar
  3. 3.
    Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Simulating elementary active membranes, with an application to the P conjecture. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 284–299. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-14370-5_18CrossRefGoogle Scholar
  4. 4.
    Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Membrane division, oracles, and the counting hierarchy. Fundam. Inform. 138(1–2), 97–111 (2015)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Tissue P systems in the Euclidean space. In: Gheorghe, M., Petre, I., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) Multidisciplinary Creativity: Homage to Gheorghe Păun on His 65th Birthday, pp. 118–128. Editura Spandugino (2015)Google Scholar
  6. 6.
    Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Monodirectional P systems. Nat. Comput. 15(4), 551–564 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: The counting power of P systems with antimatter. Theor. Comput. Sci. 701, 161–173 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Shallow non-confluent P systems. In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2016. LNCS, vol. 10105, pp. 307–316. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-54072-6_19CrossRefzbMATHGoogle Scholar
  9. 9.
    Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Subroutines in P systems and closure properties of their complexity classes. In: Graciani, C., Păun, G., Riscos-Núñez, A., Valencia-Cabrera, L. (eds.) 15th Brainstorming Week on Membrane Computing, pp. 115–128, No. 1/2017 in RGNC Reports. Fénix Editora (2017)Google Scholar
  10. 10.
    Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: A toolbox for simpler active membrane algorithms. Theor. Comput. Sci. 673, 42–57 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Murphy, N., Woods, D.: The computational power of membrane systems under tight uniformity conditions. Nat. Comput. 10(1), 613–632 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Murphy, N., Woods, D.: Uniformity is weaker than semi-uniformity for some membrane systems. Fundam. Inform. 134(1–2), 129–152 (2014)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1993)zbMATHGoogle Scholar
  14. 14.
    Păun, G.: P systems with active membranes: attacking NP-complete problems. J. Autom. Lang. Comb. 6(1), 75–90 (2001)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Păun, G.: Further twenty six open problems in membrane computing. In: Gutíerrez-Naranjo, M.A., Riscos-Nuñez, A., Romero-Campero, F.J., Sburlan, D. (eds.) Proceedings of the Third Brainstorming Week on Membrane Computing, pp. 249–262. Fénix Editora (2005)Google Scholar
  16. 16.
    Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes in models of cellular computing with membranes. Nat. Comput. 2(3), 265–284 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Porreca, A.E.: Communication topologies in natural computing, Seminar of the CANA research group, Laboratoire d’Informatique et Systèmes (LIS), UMR 7020, Aix-Marseille Université, CNRS, Université de Toulon, France (2018). https://aeporreca.org/talks/
  18. 18.
    Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del Amor, M.A., Riscos-Núñez, A., Pérez-Jiménez, M.J.: Restricted polarizationless P systems with active membranes: minimal cooperation only inwards. In: Graciani, C., Păun, G., Riscos-Núñez, A., Valencia-Cabrera, L. (eds.) 15th Brainstorming Week on Membrane Computing, pp. 215–252, No. 1/2017 in RGNC Reports. Fénix Editora (2017)Google Scholar
  19. 19.
    Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del Amor, M.A., Riscos-Núñez, A., Pérez-Jiménez, M.J.: Restricted polarizationless P systems with active membranes: Minimal cooperation only outwards. In: Graciani, C., Păun, G., Riscos-Núñez, A., Valencia-Cabrera, L. (eds.) 15th Brainstorming Week on Membrane Computing, pp. 253–290. No. 1/2017 in RGNC Reports. Fénix Editora (2017)Google Scholar
  20. 20.
    Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del-Amor, M.A., Riscos-Núñez, A., Pérez-Jiménez, M.J.: Computational efficiency of minimal cooperation and distribution in polarizationless P systems with active membranes. Fundam. Inf. 153(1–2), 147–172 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del-Amor, M.A., Riscos-Núñez, A., Pérez-Jiménez, M.J.: Reaching efficiency through collaboration in membrane systems: dissolution, polarization and cooperation. Theor. Comput. Sci. 701, 226–234 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P systems with active membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.) Unconventional Models of Computation, UMC’2K, pp. 289–301. Springer, Heidelberg (2001).  https://doi.org/10.1007/978-1-4471-0313-4_21CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Alberto Leporati
    • 1
  • Luca Manzoni
    • 1
  • Giancarlo Mauri
    • 1
  • Antonio E. Porreca
    • 1
  • Claudio Zandron
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanoItaly

Personalised recommendations