Advertisement

Chocolate P Automata

  • Artiom Alhazov
  • Rudolf FreundEmail author
  • Sergiu Ivanov
  • Marion Oswald
  • Sergey Verlan
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11270)

Abstract

We introduce several variants of input-driven tissue P automata – we also will call them chocolate automata – where the rules to be applied only depend on the input symbol. Both strings and multisets are considered as input objects; the strings are either read from an input tape or defined by the sequence of symbols taken in, and the multisets are given in an input cell at the beginning of a computation, enclosed in a vesicle. Additional symbols generated during a computation are stored in this vesicle, too. An input is accepted when the vesicle reaches a final cell and it is empty. The computational power of some variants of input-driven tissue P automata (chocolate automata) is illustrated by examples and compared with the power of the input-driven variants of other automata as register machines and counter automata.

Notes

Acknowledgements

The authors appreciate the helpful comments of the unknown referees.

References

  1. 1.
    Alhazov, A., Freund, R., Heikenwälder, H., Oswald, M., Rogozhin, Yu., Verlan, S.: Sequential P systems with regular control. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, Gy. (eds.) CMC 2012. LNCS, vol. 7762, pp. 112–127. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36751-9_9CrossRefGoogle Scholar
  2. 2.
    Alhazov, A., Freund, R., Ivanov, S., Verlan, S.: (Tissue) P systems with vesicles of multisets. In: Csuhaj-Varjú, E., Dömösi, P., Vaszil, Gy. (eds.) Proceedings 15th International Conference on Automata and Formal Languages. AFL 2017, 4–6 September 2017, Debrecen, Hungary, vol. 252, pp. 11–25. EPTCS (2017).  https://doi.org/10.4204/EPTCS.252.6MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Babai, L. (ed.) Proceedings of the 36th Annual ACM Symposium on Theory of Computing, 13–16 June 2004, Chicago, IL, USA, pp. 202–211. ACM (2004).  https://doi.org/10.1145/1007352.1007390
  4. 4.
    Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), 16:1–16:43 (2009).  https://doi.org/10.1145/1516512.1516518MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bensch, S., Holzer, M., Kutrib, M., Malcher, A.: Input-driven stack automata. In: Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp. 28–42. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33475-7_3CrossRefGoogle Scholar
  6. 6.
    von Braunmühl, B., Verbeek, R.: Input-driven languages are recognized in log n space. In: Karpinski, M. (ed.) FCT 1983. LNCS, vol. 158, pp. 40–51. Springer, Heidelberg (1983).  https://doi.org/10.1007/3-540-12689-9_92CrossRefGoogle Scholar
  7. 7.
    Csuhaj-Varjú, E., Martín-Vide, C., Mitrana, V.: Multiset automata. In: Calude, C.S., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) WMC 2000. LNCS, vol. 2235, pp. 69–83. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45523-X_4Google Scholar
  8. 8.
    Csuhaj-Varjú, E., Vaszil, Gy.: P automata or purely communicating accepting P systems. In: Păun, Gh., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 219–233. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36490-0_14CrossRefGoogle Scholar
  9. 9.
    Dassow, J., Păun, Gh.: On the power of membrane computing. J. UCS 5(2), 33–49 (1999).  https://doi.org/10.3217/jucs-005-02-0033
  10. 10.
    Dymond, P.W.: Input-driven languages are in log n depth. Inf. Process. Lett. 26(5), 247–250 (1988).  https://doi.org/10.1016/0020-0190(88)90148-2MathSciNetCrossRefGoogle Scholar
  11. 11.
    Freund, R.: P automata: new ideas and results. In: Bordihn, H., Freund, R., Nagy, B., Vaszil, Gy. (eds.) Proceedings of Eighth Workshop on Non-Classical Models of Automata and Applications. NCMA 2016, 29–30 August 2016, Debrecen, Hungary, vol. 321, pp. 13–40. Österreichische Computer Gesellschaft (2016). https://shop.ocg.at/de/books.html
  12. 12.
    Freund, R., Ibarra, O., Păun, Gh., Yen, H.C.: Matrix languages, register machines, vector addition systems. In: Third Brainstorming Week on Membrane Computing, pp. 155–167 (2005). https://www.gcn.us.es/3BWMC/bravolpdf/bravol155.pdf
  13. 13.
    Freund, R., Kogler, M., Rogozhin, Yu., Verlan, S.: Graph-controlled insertion-deletion systems. In: Proceedings Twelfth Annual Workshop on Descriptional Complexity of Formal Systems. DCFS 2010, 8–10 August 2010, Saskatoon, Canada, pp. 88–98 (2010).  https://doi.org/10.4204/EPTCS.31.11CrossRefGoogle Scholar
  14. 14.
    Freund, R., Oswald, M.: Tissue P systems and (mem)brane systems with mate and drip operations working on strings. Electron. Notes Theor. Comput. Sci. 171(2), 105–115 (2007).  https://doi.org/10.1016/j.entcs.2007.05.011CrossRefzbMATHGoogle Scholar
  15. 15.
    Freund, R., Păun, Gh.: How to obtain computational completeness in P systems with one catalyst. In: Proceedings Machines, Computations and Universality 2013. MCU 2013, 9–11 September 2013, Zürich, Switzerland, pp. 47–61 (2013).  https://doi.org/10.4204/EPTCS.128.13MathSciNetCrossRefGoogle Scholar
  16. 16.
    Freund, R., Rogozhin, Yu., Verlan, S.: Generating and accepting P systems with minimal left and right insertion and deletion. Nat. Comput. 13(2), 257–268 (2014).  https://doi.org/10.1007/s11047-013-9396-3MathSciNetCrossRefGoogle Scholar
  17. 17.
    Greibach, S.A.: Remarks on blind and partially blind one-way multicounter machines. Theor. Comput. Sci. 7, 311–324 (1978).  https://doi.org/10.1016/0304-3975(78)90020-8MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kudlek, M., Totzke, P., Zetzsche, G.: Multiset pushdown automata. Fundam. Inform. 93(1–3), 221–233 (2009).  https://doi.org/10.3233/FI-2009-0098MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kutrib, M., Malcher, A., Wendlandt, M.: Tinput-driven pushdown, counter, and stack automata. Fundam. Inform. 155(1–2), 59–88 (2017).  https://doi.org/10.3233/FI-2017-1576MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kutrib, M., Malcher, A., Wendlandt, M.: Queue automata: foundations and developments. In: Adamatzky, A. (ed.) Reversibility and Universality. ECC, vol. 30, pp. 385–431. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73216-9_19CrossRefGoogle Scholar
  21. 21.
    Martín-Vide, C., Pazos, J., Păun, Gh., Rodríguez-Patón, A.: A new class of symbolic abstract neural nets: tissue P systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 290–299. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45655-4_32Google Scholar
  22. 22.
    Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 422–435. Springer, Heidelberg (1980).  https://doi.org/10.1007/3-540-10003-2_89CrossRefGoogle Scholar
  23. 23.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  24. 24.
    Okhotin, A., Salomaa, K.: Input-driven pushdown automata: nondeterminism and unambiguity. In: Bensch, S., Drewes, F., Freund, R., Otto, F. (eds.) Proceedings of Fifth Workshop on Non-Classical Models for Automata and Applications. NCMA 2013, 13–14 August 2013, Umeå, Sweden, vol. 294, pp. 31–33. Österreichische Computer Gesellschaft (2013). https://shop.ocg.at/de/books.html
  25. 25.
    Okhotin, A., Salomaa, K.: Input-driven pushdown automata with limited nondeterminism. In: Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 84–102. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09698-8_9CrossRefGoogle Scholar
  26. 26.
    Okhotin, A., Salomaa, K.: Descriptional complexity of unambiguous input-driven pushdown automata. Theor. Comput. Sci. 566, 1–11 (2015).  https://doi.org/10.1016/j.tcs.2014.11.015MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Okhotin, A., Salomaa, K.: State complexity of operations on input-driven pushdown automata. J. Comput. Syst. Sci. 86, 207–228 (2017).  https://doi.org/10.1016/j.jcss.2017.02.001MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Oswald, M.: P automata. Ph.D. thesis, Faculty of Computer Science, TU Wien (2003)Google Scholar
  29. 29.
    Păun, A., Păun, Gh.: The power of communication: P systems with symport/antiport. New Gener. Comput. 20(3), 295–306 (2002).  https://doi.org/10.1007/BF03037362CrossRefGoogle Scholar
  30. 30.
    Păun, Gh.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000).  https://doi.org/10.1006/jcss.1999.1693MathSciNetCrossRefGoogle Scholar
  31. 31.
    Păun, Gh., Pérez-Jiménez, M.J.: P automata revisited. Theor. Comput. Sci. 454, 222–230 (2012).  https://doi.org/10.1016/j.tcs.2012.01.036MathSciNetCrossRefGoogle Scholar
  32. 32.
    Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)Google Scholar
  33. 33.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1–3. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  34. 34.
    Bulletin of the International Membrane Computing Society (IMCS). http://membranecomputing.net/IMCSBulletin/index.php
  35. 35.
    The P Systems Website. http://ppage.psystems.eu/

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Artiom Alhazov
    • 1
  • Rudolf Freund
    • 2
    Email author
  • Sergiu Ivanov
    • 3
  • Marion Oswald
    • 2
  • Sergey Verlan
    • 4
  1. 1.Institute of Mathematics and Computer ScienceChişinăuMoldova
  2. 2.Faculty of InformaticsTU WienViennaAustria
  3. 3.IBISC, Université Évry, Université Paris-SaclayÉvryFrance
  4. 4.Laboratoire d’Algorithmique, Complexité et Logique, Université Paris Est CréteilCréteilFrance

Personalised recommendations