Advertisement

Temporal Graph Classes: A View Through Temporal Separators

  • Till Fluschnik
  • Hendrik Molter
  • Rolf Niedermeier
  • Philipp Zschoche
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11159)

Abstract

We investigate the computational complexity of separating two distinct vertices s and z by vertex deletion in a temporal graph. In a temporal graph, the vertex set is fixed but the edges have (discrete) time labels. Since the corresponding Temporal (sz)-Separation problem is NP-hard, it is natural to investigate whether relevant special cases exist that are computationally tractable. To this end, we study restrictions of the underlying (static) graph—there we observe polynomial-time solvability in the case of bounded treewidth—as well as restrictions concerning the “temporal evolution” along the time steps. Systematically studying partially novel concepts in this direction, we identify sharp borders between tractable and intractable cases.

References

  1. 1.
    Axiotis, K., Fotakis, D.: On the size and the approximability of minimum temporally connected subgraphs. In: Proceedings of 43rd ICALP, vol. 55, pp. 149:1–149:14. Dagstuhl Publishing (2016)Google Scholar
  2. 2.
    Barrat, A., Fournet, J.: Contact patterns among high school students. PLoS ONE 9(9), e107878 (2014)CrossRefGoogle Scholar
  3. 3.
    Beineke, L.W.: Characterizations of derived graphs. J. Comb. Theor. 9(2), 129–135 (1970)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: A \(c^k n\) 5-approximation algorithm for treewidth. SIAM J. Comput. 45(2), 317–378 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012)CrossRefGoogle Scholar
  6. 6.
    Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21275-3CrossRefzbMATHGoogle Scholar
  7. 7.
    Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graph exploration. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 444–455. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47672-7_36CrossRefGoogle Scholar
  8. 8.
    Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks. Theor. Comput. Sci. 469, 53–68 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fluschnik, T., Molter, H., Niedermeier, R., Zschoche, P.: Temporal graph classes: a view through temporal separators. CoRR, abs/1803.00882 (2018). http://arxiv.org/abs/1803.00882. Long version of this paper
  10. 10.
    Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing problems: distance from triviality. In: Downey, R., Fellows, M., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 162–173. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28639-4_15CrossRefGoogle Scholar
  11. 11.
    Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for temporal networks. J. Comput. Syst. Sci. 64(4), 820–842 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Khodaverdian, A., Weitz, B., Wu, J., Yosef, N.: Steiner network problems on temporal graphs. CoRR, abs/1609.04918v2 (2016)Google Scholar
  13. 13.
    Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: Proceedings of 42nd STOC, pp. 513–522. ACM (2010)Google Scholar
  14. 14.
    Liu, C., Wu, J.: Scalable routing in cyclic mobile networks. IEEE Trans. Parallel Distrib. Syst. 20(9), 1325–1338 (2009)CrossRefGoogle Scholar
  15. 15.
    Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. Theor. Comput. Sci. 634, 1–23 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wu, H., Cheng, J., Ke, Y., Huang, S., Huang, Y., Wu, H.: Efficient algorithms for temporal path computation. IEEE Trans. Knowl. Data. Eng. 28(11), 2927–2942 (2016)CrossRefGoogle Scholar
  17. 17.
    Zschoche, P., Fluschnik, T., Molter, H., Niedermeier, R.: The complexity of finding small separators in temporal graphs. In: Proceedings of the 43rd MFCS, LIPIcs. Schloss Dagstuhl-Leibniz Center for Informatics (2018, to appear). https://arxiv.org/abs/1711.00963

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Till Fluschnik
    • 1
  • Hendrik Molter
    • 1
  • Rolf Niedermeier
    • 1
  • Philipp Zschoche
    • 1
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinBerlinGermany

Personalised recommendations