Skip to main content

Temporal Graph Classes: A View Through Temporal Separators

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11159))

Included in the following conference series:

Abstract

We investigate the computational complexity of separating two distinct vertices s and z by vertex deletion in a temporal graph. In a temporal graph, the vertex set is fixed but the edges have (discrete) time labels. Since the corresponding Temporal (sz)-Separation problem is NP-hard, it is natural to investigate whether relevant special cases exist that are computationally tractable. To this end, we study restrictions of the underlying (static) graph—there we observe polynomial-time solvability in the case of bounded treewidth—as well as restrictions concerning the “temporal evolution” along the time steps. Systematically studying partially novel concepts in this direction, we identify sharp borders between tractable and intractable cases.

Due to the space constraints, missing details and proofs (marked with \(\star \)) are deferred to a long version [9] of this paper, see https://arxiv.org/abs/1803.00882.

T. Fluschnik—Supported by the DFG, project DAMM (NI 369/13).

H. Molter—Supported by the DFG, project MATE (NI 369/17).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If this is not the case, then \(\varvec{E}\) can be sorted by ascending labels with bucketsort or mergesort in \(\mathcal {O}(\min \{\tau ,|\varvec{E}|\log |\varvec{E}|\})\) time.

  2. 2.

    The vertex cover number of a graph is the smallest number of vertices such that each edges has at least one of these vertices as an endpoint.

  3. 3.

    We refer to the long version [9] for details.

  4. 4.

    The Kendall tau distance is a metric that counts the number of inversions between two total orderings; it is also known as “bubble sort distance”.

References

  1. Axiotis, K., Fotakis, D.: On the size and the approximability of minimum temporally connected subgraphs. In: Proceedings of 43rd ICALP, vol. 55, pp. 149:1–149:14. Dagstuhl Publishing (2016)

    Google Scholar 

  2. Barrat, A., Fournet, J.: Contact patterns among high school students. PLoS ONE 9(9), e107878 (2014)

    Article  Google Scholar 

  3. Beineke, L.W.: Characterizations of derived graphs. J. Comb. Theor. 9(2), 129–135 (1970)

    Article  MathSciNet  Google Scholar 

  4. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: A \(c^k n\) 5-approximation algorithm for treewidth. SIAM J. Comput. 45(2), 317–378 (2016)

    Article  MathSciNet  Google Scholar 

  5. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012)

    Article  Google Scholar 

  6. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  7. Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graph exploration. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 444–455. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47672-7_36

    Chapter  Google Scholar 

  8. Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks. Theor. Comput. Sci. 469, 53–68 (2013)

    Article  MathSciNet  Google Scholar 

  9. Fluschnik, T., Molter, H., Niedermeier, R., Zschoche, P.: Temporal graph classes: a view through temporal separators. CoRR, abs/1803.00882 (2018). http://arxiv.org/abs/1803.00882. Long version of this paper

  10. Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing problems: distance from triviality. In: Downey, R., Fellows, M., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 162–173. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28639-4_15

    Chapter  Google Scholar 

  11. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for temporal networks. J. Comput. Syst. Sci. 64(4), 820–842 (2002)

    Article  MathSciNet  Google Scholar 

  12. Khodaverdian, A., Weitz, B., Wu, J., Yosef, N.: Steiner network problems on temporal graphs. CoRR, abs/1609.04918v2 (2016)

    Google Scholar 

  13. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: Proceedings of 42nd STOC, pp. 513–522. ACM (2010)

    Google Scholar 

  14. Liu, C., Wu, J.: Scalable routing in cyclic mobile networks. IEEE Trans. Parallel Distrib. Syst. 20(9), 1325–1338 (2009)

    Article  Google Scholar 

  15. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. Theor. Comput. Sci. 634, 1–23 (2016)

    Article  MathSciNet  Google Scholar 

  16. Wu, H., Cheng, J., Ke, Y., Huang, S., Huang, Y., Wu, H.: Efficient algorithms for temporal path computation. IEEE Trans. Knowl. Data. Eng. 28(11), 2927–2942 (2016)

    Article  Google Scholar 

  17. Zschoche, P., Fluschnik, T., Molter, H., Niedermeier, R.: The complexity of finding small separators in temporal graphs. In: Proceedings of the 43rd MFCS, LIPIcs. Schloss Dagstuhl-Leibniz Center for Informatics (2018, to appear). https://arxiv.org/abs/1711.00963

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Zschoche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fluschnik, T., Molter, H., Niedermeier, R., Zschoche, P. (2018). Temporal Graph Classes: A View Through Temporal Separators. In: Brandstädt, A., Köhler, E., Meer, K. (eds) Graph-Theoretic Concepts in Computer Science. WG 2018. Lecture Notes in Computer Science(), vol 11159. Springer, Cham. https://doi.org/10.1007/978-3-030-00256-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00256-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00255-8

  • Online ISBN: 978-3-030-00256-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics