Advertisement

Constructing Customized Multi-hop Topologies in Dense Wireless Network Testbeds

  • Florian Kauer
  • Volker Turau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11104)

Abstract

Testbeds are a key element in the evaluation of wireless multi-hop networks. In order to relieve researchers from the hassle of deploying their own testbeds, remotely controllable testbeds, such as the FIT/IoT-LAB, are built. However, while the IoT-LAB has a high number of nodes, they are deployed in constraint areas. This, together with the complex nature of radio propagation, makes an ad-hoc construction of multi-hop topologies with a high number of hops difficult. This work presents a strategic approach to solve this problem and proposes algorithms to generate topologies with desired properties. The implementation is evaluated for the IoT-LAB testbeds and is provided as open-source software. The results show that preset topologies of various types can be built even in dense testbeds.

References

  1. 1.
    Adjih, C., Baccelli, E., Fleury, E., et al.: FIT IoT-LAB: a large scale open experimental IoT testbed. In: 2nd IEEE World Forum on Internet of Things (WF-IoT) (2015)Google Scholar
  2. 2.
    Alexander, R., Brandt, A., Vasseur, J., et al.: RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks (2012)Google Scholar
  3. 3.
    ATMEL: AT86RF231 - Low Power 2.4 GHz Transceiver for ZigBee, IEEE 802.15.4, 6LoWPAN, RF4CE, SP100, WirelessHART, and ISM Applications, Datasheet, San Jose, CA, USA (2009)Google Scholar
  4. 4.
    Barrenetxea, G., Ingelrest, F., Schaefer, G., et al.: The Hitchhiker’s guide to successful wireless sensor network deployments. In: 6th ACM Conference on Embedded Network Sensor Systems (SenSys) (2008)Google Scholar
  5. 5.
    Bildea, A., Alphand, O., Rousseau, F., et al.: Link quality metrics in large scale indoor wireless sensor networks. In: 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC) (2013)Google Scholar
  6. 6.
    Ceriotti, M., Corrà, M., D’Orazio, L., et al.: Is there light at the ends of the tunnel? Wireless sensor networks for adaptive lighting in road tunnels. In: 10th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN) (2011)Google Scholar
  7. 7.
    Chatzigiannakis, I., Fischer, S., Koninis, C., Mylonas, G., Pfisterer, D.: WISEBED: an open large-scale wireless sensor network testbed. In: Komninos, N. (ed.) Sensappeal 2009. LNICST, vol. 29, pp. 68–87. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11870-8_6CrossRefGoogle Scholar
  8. 8.
    Ducrocq, T., Hauspie, M., Mitton, N., et al.: On the impact of network topology on wireless sensor networks performances illustration with geographic routing. In: International Workshops on the Performance Analysis and Enhancement of Wireless Networks (2014)Google Scholar
  9. 9.
    Dutta, P., Hui, J., Jeong, J., et al.: Trio: enabling sustainable and scalable outdoor wireless sensor network deployments. In: 5th International Conference on Information Processing in Sensor Networks (IPSN) (2006)Google Scholar
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York (1979)Google Scholar
  11. 11.
    Heurtefeux, K., Valois, F.: Is RSSI a good choice for localization in wireless sensor network? In: 26th International Conference on Advanced Information Networking and Applications (AINA) (2012)Google Scholar
  12. 12.
    Kauer, F.: Toolset for Generating Multi-hop Topologies for the FIT IoT-LAB (2018). https://github.com/koalo/iotlab_topologies
  13. 13.
    Köstler, M., Kauer, F., Lübkert, T., et al.: Towards an open source implementation of the IEEE 802.15.4 DSME link layer. In: Scholz, J., Bodisco, A. (eds.) 15. GI/ITG KuVS Fachgespräch Sensornetze (2016)Google Scholar
  14. 14.
    Langendoen, K., Baggio, A., Visser, O.: Murphy loves potatoes: experiences from a pilot sensor network deployment in precision agriculture. In: 20th IEEE International Parallel & Distributed Processing Symposium (IPDPS) (2006)Google Scholar
  15. 15.
    Li, M., Li, Z., Vasilakos, A.V.: A survey on topology control in wireless sensor networks: taxonomy, comparative study, and open issues. Proc. IEEE 101(12), 2538–2557 (2013)CrossRefGoogle Scholar
  16. 16.
    Lougee-Heimer, R.: The Common Optimization INterface for operations research: promoting open-source software in the operations research community. IBM J. Res. Dev. 47(1), 57–66 (2003)CrossRefGoogle Scholar
  17. 17.
    Mao, X., Miao, X., He, Y., et al.: CitySee: urban CO2 monitoring with sensors. In: 31st IEEE International Conference on Computer Communications (INFOCOM) (2012)Google Scholar
  18. 18.
    Myers, S., Megerian, S., Banerjee, S., et al.: Experimental investigation of IEEE 802.15.4 transmission power control and interference minimization. In: 4th IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON) (2007)Google Scholar
  19. 19.
    O’donovan, T., Brown, J., Büsching, F., et al.: The GINSENG system for wireless monitoring and control: design and deployment experiences. ACM Trans. Sens. Netw. 10(1), 4:1–4:40 (2013)Google Scholar
  20. 20.
    Papadopoulos, G.Z., Gallais, A., Schreiner, G., et al.: Thorough IoT testbed characterization: from proof-of-concept to repeatable experimentations. Comput. Netw. 119, 86–101 (2017)CrossRefGoogle Scholar
  21. 21.
    Papadopoulos, G.Z., Gallais, A., Schreiner, G., et al.: Importance of repeatable setups for reproducible experimental results in IoT. In: 13th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks (PE-WASUN) (2016)Google Scholar
  22. 22.
    Pfahl, A., Randt, M., Meier, F., et al.: A holistic approach for low cost heliostat fields. In: 20th International Conference on Concentrated Solar Power and Chemical Energy Technologies (SolarPACES) (2014)Google Scholar
  23. 23.
    Ramanathan, R., Rosales-Hain, R.: Topology control of multihop wireless networks using transmit power adjustment. In: 19th IEEE Conference on Computer Communications (INFOCOM) (2000)Google Scholar
  24. 24.
    Santi, P.: Topology control in wireless ad hoc and sensor networks. ACM Comput. Surv. 37(2), 164–194 (2005)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Tang, L., Wang, K.-C., Huang, Y., et al.: Channel characterization and link quality assessment of IEEE 802.15.4-compliant radio for factory environments. IEEE Trans. Indus. Inform. 3(2), 99–110 (2007)CrossRefGoogle Scholar
  26. 26.
    Tsiropoulou, E.E., Paruchuri, S.T., Baras, J.S.: Interest, energy and physical-aware coalition formation and resource allocation in smart IoT applications. In: 51st Annual Conference on Information Sciences and Systems (CISS 2017) (2017)Google Scholar
  27. 27.
    Watteyne, T., Adjih, C., Vilajosana, X.: Lessons learned from large-scale dense IEEE802.15.4 connectivity traces. In: 11th International Conference on Automation Science and Engineering (CASE) (2015)Google Scholar
  28. 28.
    Werner-Allen, G., Swieskowski, P., Welsh, M.: MoteLab: a wireless sensor network testbed. In: 4th International Symposium on Information Processing in Sensor Networks (IPSN) (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of TelematicsHamburg University of TechnologyHamburgGermany

Personalised recommendations