DACAR: Distributed & Adaptable Crosslayer Anticollision and Routing Protocol for RFID

  • Abdoul Aziz MbackeEmail author
  • Nathalie Mitton
  • Herve Rivano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11104)


In the midst of Internet of Things development, a first requirement was tracking and identification of those mentioned “things which could be done thanks to Radio Frequency Identification. However, since then, the development of RFID allowed a new range of applications among which is remote sensing of environmental values. While RFID can be seen as a more efficient solution than traditional Wireless Sensor Networks, two main issues remain: first reading collisions and second proficient data gathering solution. In this paper, we examine the implementation of two applications: for industrial IoT and for smart cities, respectively. Both applications, in regards to their requirements and configuration, challenge the operation of a RFID sensing solution combined with a dynamic wireless data gathering over multihops. They require the use of both mobile and fixed readers to cover the extent of deployment area and a quick retrieval of tag information. We propose a distributed crosslayer solution for improving the efficiency of the RFID system in terms of collision and throughput but also its proficiency in terms of tag information routing towards one or multiple sinks. Simulation results show that we can achieve high level of throughput while maintaining a low level of collision and a fairness of reader medium access above \(95\%\) in situations where readers can be fix and mobile, while tag information is routed with a data rate of \({\approx }97\%\) at worst and reliable delays for considered applications.


RFID IoT Resource allocation Routing MAC layer 


  1. 1.
    Amadou, I., Mitton, N.: High adaptive MAC protocol for dense RFID reader-to-reader networks. In: Mitton, N., Kantarci, M.E., Gallais, A., Papavassiliou, S. (eds.) ADHOCNETS 2015. LNICST, vol. 155, pp. 82–93. Springer, Cham (2015). Scholar
  2. 2.
    Aroca, R.V., Hernandes, A.C., Magalhães, D.V., Becker, M., Vaz, C.M., Calbo, A.G.: Application of standard epc/gen2 uhf RFID tags as soil moisture sensors. In: Proceedings of Multidisciplinary Digital Publishing Institute, vol. 1 (2016)Google Scholar
  3. 3.
    Bartholmai, M., Johann, S., Kammermeier, M., Müller, M., Strangfeld, C.: Transmission characteristics of RFID sensor systems embedded in concrete. In: Proceedings of IEEE SENSORS (2016)Google Scholar
  4. 4.
    Bueno-Delgado, V., Ferrero, R., Gandino, F., Pavon-Marino, P., Rebaudengo, M.: A geometric distribution reader anti-collision protocol for RFID dense reader environments. IEEE T-ASE 10, 296–306 (2013)Google Scholar
  5. 5.
    Cassel, M., Dépret, T., Piégay, H.: Assessment of a new solution for tracking pebbles in rivers based on active RFID. Earth Surf. Process. Landf. 42, 1938–1951 (2017)CrossRefGoogle Scholar
  6. 6.
    Da Xu, L., He, W., Li, S.: Internet of Things in industries: a survey. IEEE Trans. Ind. Inform. 10, 2233–2243 (2014)CrossRefGoogle Scholar
  7. 7.
    Dheeraj, K.K., Kwan-Wu, C., Raad, R.: A survey and tutorial of RFID anti-collision protocols. IEEE Commun. Surv. Tutor. 12(3), 400–421 (2010)CrossRefGoogle Scholar
  8. 8.
    ETSI: Radio frequency identification equipment operating in the band 865 MHz to 868 MHz with power levels up to 2 W and in the band 915 MHz to 921 MHz with power levels up to 4 W; harmonised standard covering the essential requirements of article 3.2 of the directive 2014/53/eu (2016)Google Scholar
  9. 9.
    Fedor, S., Collier, M.: On the problem of energy efficiency of multi-hop vs one-hop routing in wireless sensor networks. In: Proceedings of the International conference on AINA (2007)Google Scholar
  10. 10.
    Finkenzeller, K.: RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, chap. 3. Wiley, Hoboken (2003)Google Scholar
  11. 11.
    Gandino, F., Ferrero, R., Montrucchio, B.: DCNS: an adaptable high throughput RFID reader-to-reader anticollision protocol. IEEE TPDS 24(5), 893–905 (2013)Google Scholar
  12. 12.
    Golsorkhtabaramiri, M., Hosseinzadeh, M., Reshadi, M., Rahmani, A.: A reader anti-collision protocol for RFID-enhanced wireless sensor networks. Wirel. Pers. Commun. 81, 893–905 (2015)CrossRefGoogle Scholar
  13. 13.
    Kim, S., et al.: Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proc. IEEE 102, 1649–1666 (2014)CrossRefGoogle Scholar
  14. 14.
    Mbacke, A.A., Mitton, N., Rivano, H.: RFID reader anticollision protocols for dense and mobile deployments. Electronics 5(4), 84 (2016). MDPI Electronics Special Issue “RFID Systems and Applications”CrossRefGoogle Scholar
  15. 15.
    Mbacké, A.A., Mitton, N., Rivano, H.: Data gathering solutions for dense RFID deployments. In: Proceedings of the IEEE UIC (2017)Google Scholar
  16. 16.
    Mbacké, A.A., Mitton, N., Rivano, H.: RFID anticollision in dense mobile environments. In: Proceedings of the IEEE WCNC. IEEE (2017)Google Scholar
  17. 17.
    Mbacke, A.A., Mitton, N., Rivano, H.: A survey of RFID readers anticollision protocols. IEEE J. RFID 2, 38–48 (2017)Google Scholar
  18. 18.
    Ramirez, R., Rojas-Nastrucci, E., Weller, T.: UHF RFID tags for on/off-metal applications fabricated using additive manufacturing. IEEE Antennas Wirel. Propag. Lett. (2017)Google Scholar
  19. 19.
    Razzaque, M.A., Dobson, S.: Energy-efficient sensing in wireless sensor networks using compressed sensing. MDPI Sens. 14, 2822–2859 (2014)CrossRefGoogle Scholar
  20. 20.
    Rezaie, H., Golsorkhtabaramiri, M.: A fair reader collision avoidance protocol for RFID dense reader environments. Wirel. Netw. 24, 1953–1964 (2017)CrossRefGoogle Scholar
  21. 21.
    IEEE Computer Society: IEEE standard for information technology, IEEE 802.11 standard (1999)Google Scholar
  22. 22.
    Waldrop, J., Engels, D.W.: Colorwave: an anticollision algorithm for the reader collision problem. In: ICC (2003)Google Scholar
  23. 23.
    Want, R.: Enabling ubiquitous sensing with RFID. IEEE Comput. 37, 84–86 (2004)CrossRefGoogle Scholar
  24. 24.
    Zalbide, I., D’Entremont, E., Jiménez, A., Solar, H., Beriain, A., Berenguer, R.: Battery-free wireless sensors for industrial applications based on UHF RFID technology. In: Proceedings of the IEEE SENSORS (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Abdoul Aziz Mbacke
    • 1
    • 2
    Email author
  • Nathalie Mitton
    • 1
  • Herve Rivano
    • 2
  1. 1.InriaRocquencourtFrance
  2. 2.Univ Lyon, INSA Lyon, CITIVilleurbanneFrance

Personalised recommendations