Advertisement

Discriminant Analysis of Different Kinds of Medicinal Liquor Based on FT-IR Spectroscopy

  • Yang Liu
  • Fan Wang
  • Chunfu Shao
  • Wei You
  • Qi Chen
  • Yujie Dai
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 856)

Abstract

The discriminant analysis model of different medicinal liquor was established based on Fourier transformed infrared spectroscopy (FT-IR) combined with support vector machine (SVM) and principal component analyses (PCA) with the validation accuracy of 99% and training accuracy of 100%. The model was also tested by the external samples with the prediction accuracy of 97%. The accuracy data of the experimental showed that Fourier transform infrared spectroscopy (FT-IR) can be applied well for the classification of medicinal liquor.

Keywords

Fourier Transformed Infrared Spectroscopy (FT-IR) Medicinal liquor Species Qualitative 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21272171).

References

  1. 1.
    Quan, K., Liu, Q., Li, P., et al.: Advance of ginsenosides in anticancer activities. J. Med. Postgrad. 28(4), 427 (2015)Google Scholar
  2. 2.
    Hu, T.C., Liu, Y.M., Tao, R.S., et al.: Advances on the chemical components and pharmacological activities of Velvet Antler. J. Econ. Anim. 19(3), 156–162 (2015)Google Scholar
  3. 3.
    Yu, G.H., Pei, W.X., Sun, H.J., et al.: Neuroprotective effect and relative mechanisms of lycii fructus polysaccharide. Chin. J. Exp. Tradit. Med. Formulae 24(9), 225–231 (2018)Google Scholar
  4. 4.
    Gong, W.X., Zhou, Y.Z., Li, X., et al.: Research progress in antidepressive active ingredients and pharmacological effects of Angelicae Sinensis Radix. Chin. Tradit. Herbal Drugs 47(21), 3905–3911 (2016)Google Scholar
  5. 5.
    Urbano-Cuadrado, M., Luque De Castro, M.D., Perez-Juan, P.M., et al.: Near infrared reflectance spectroscopy and multivariate analysis in enology: determination or screening of fifteen parameters in different types of wines. Anal. Chim. Acta 527(1), 81–88 (2004)CrossRefGoogle Scholar
  6. 6.
    Cozzolino, D., Kwiatkowski, M.J., Parker, M., et al.: Predictionof phenolic compounds in red wine fermentations by visible and nearinfrared spectroscopy. Anal. Chim. Acta 513(1), 73–80 (2004)CrossRefGoogle Scholar
  7. 7.
    Cozzolino, D., Kwiatkowski, M.J., Waters, E.J., et al.: A feasibility study on the use of visible and short wavelengths in the near-infrared region for the non-destructive measurement of wine composition. Anal. Bioanal. Chem. 387(6), 2289–2295 (2007)CrossRefGoogle Scholar
  8. 8.
    Sauvage, L., Frank, D., Stearne, J., et al.: Trace metal studies of selected white wines: an alternative approach. Anal. Chim. Acta 458(1), 223–230 (2002)CrossRefGoogle Scholar
  9. 9.
    Coimbra, M.A., Barros, A.S., Coelho, E., et al.: Quantification of polymeric mannose in wine extracts by FT-IR spectroscopy and OSC-PLS1 regression. Carbohydr. Polym. 61(4), 434–440 (2005)CrossRefGoogle Scholar
  10. 10.
    Qin, O., Chen, Q., Zhao, J.: Intelligent sensing sensory quality of Chinese rice using near infrared spectroscopy and nonlinear tools. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 154, 42–46 (2016)CrossRefGoogle Scholar
  11. 11.
    Chinese Pharmacopoeia Commission: Chinese Pharmacopoeia (edition 2015), pp. 8–9, 133–134, 249–250, 323. China Medical Science Press, Beijing (2015)Google Scholar
  12. 12.
    Bona, E., Marquetti, I., Link, J.V., et al.: Support vector machines in tandem with infrared spectroscopy for geographical classification of green arabica coffee. LWT-Food Sci. Technol. 76, 330–336 (2017)CrossRefGoogle Scholar
  13. 13.
    Luo, Y., Wang, X.C., Deng, D.W.: Near infrared spectroscopy technology and its application in food sensory analysis. Food Sci. 30(7), 273–276 (2009)Google Scholar
  14. 14.
    Rinaldo, S.B., Duhan, D.F., King, K., et al.: Tasting and evaluating aroma of wine: frontal lobe measurement using near infrared. Dev. Market. Sci. Proc. Acad. Market. Sci. 653 (2013)Google Scholar
  15. 15.
    Lu, Y.Z., Du, C.W., Yu, C.B., et al.: Classifying rapeseed varieties using Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS). Comput. Electron. Agric. 107, 58–63 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yang Liu
    • 1
    • 2
  • Fan Wang
    • 2
  • Chunfu Shao
    • 1
    • 2
  • Wei You
    • 2
  • Qi Chen
    • 2
  • Yujie Dai
    • 1
  1. 1.Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of BioengineeringTianjin University of Science and TechnologyTianjinPeople’s Republic of China
  2. 2.Tasly AcademyTasly GroupTianjinPeople’s Republic of China

Personalised recommendations