Advertisement

Comparison of Numerical Models Used for Automated Analysis of Mechanical Structures

  • Andrzej TuchołkaEmail author
  • Maciej Majewski
  • Wojciech Kacalak
  • Zbigniew Budniak
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 859)

Abstract

Authors present the comparison of properties observed in numerical models, that were used to classify features of mechanical constructions. We use these models to detect similarities between mechanical designs and compare them on how well they quantify the description of the mechanical elements, and how they deal with arising challenges: multi-dimensionality of feature values, multiple classes of relations, data incompleteness and variability of format. The key conclusion here, is the ability of modern numerical models (i.e. ConvNet, CapsNet) to process information describing mechanical constructions, while including meaningful structural data in the calculations. Application of these models can provide direct assistance in the mechanical design process.

Keywords

Structure analysis ConvNet CapsNet 

References

  1. 1.
    Kacalak, W., Majewski, M.: New Intelligent interactive automated systems for design of machine elements and assemblies. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part IV. LNCS, vol. 7666, pp. 115–122. Springer, Heidelberg (2012)Google Scholar
  2. 2.
    Kacalak, W., Majewski, M.: Interactive design of machine elements and assemblies. Arch. Mech. Technol. Autom. 34(3), 13–22 (2014)Google Scholar
  3. 3.
    Kacalak, W., Majewski, M., Tuchołka, A.: Intelligent assessment of structure correctness using antipatterns. In: International Conference on Computational Science and Computational Intelligence, pp. 559-564. IEEE Xplore Digital Library. IEEE (2015)Google Scholar
  4. 4.
    Kacalak, W., Majewski, M., Budniak, Z.: Intelligent automated design of machine components using antipatterns. In: Jackowski, K., Burduk, R., Walkowiak, K., Wozniak, M., Yin, H. (eds.) Intelligent Data Engineering and Automated Learning. Lecture Notes in Computer Science, vol. 9375, pp. 248–255. Springer, Cham (2015)Google Scholar
  5. 5.
    Kacalak, W., Majewski, M., Stuart, K., Budniak, Z.: Interactive systems for designing machine elements and assemblies. Manag. Prod. Eng. Rev. 6(3), 21–34 (2015)Google Scholar
  6. 6.
    Kacalak, W., Majewski, M., Budniak, Z.: Worm gear drives with adjustable backlash. ASME J. Mech. Robot. 8(1), 014504 (2015). ASME PressCrossRefGoogle Scholar
  7. 7.
    Kacalak, W., Majewski, M., Tuchołka, A.: A method of object-oriented symbolical description and evaluation of machine elements using antipatterns. J. Mach. Eng. 16(4), 46–69 (2016)Google Scholar
  8. 8.
    Kacalak W., Majewski M.: Interactive design of machine elements in uncertainty and unrepeatability. In: Manufacturing 2014: Contemporary Problems of Manufacturing and Production Management, pp. 57–64 (2016)Google Scholar
  9. 9.
    Kacalak W., Majewski M., Budniak Z.: Analysis of similarities between structural features of designed machine elements and corresponding antipatterns. In: Manufacturing 2014: Contemporary Problems of Manufacturing and Production Management, pp. 135–142 (2016)Google Scholar
  10. 10.
    Kacalak, W., Majewski, M., Budniak, Z.: Innovative design of non-backlash worm gear drives. Arch. Civ. Mech. Eng. 18(3), 983–999 (2018)CrossRefGoogle Scholar
  11. 11.
    Majewski, M., Zurada, J.M.: Sentence recognition using artificial neural networks. Knowl. Based Syst. 21(7), 629–635 (2008)CrossRefGoogle Scholar
  12. 12.
    McHenry, K., Bajcsy, P., (2008) An Overview of 3D Data Content, File Formats and Viewers, National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, Technical report ISDA 08-002Google Scholar
  13. 13.
    Tuchołka, A., Majewski, M., Kacalak, W.: Object-oriented, symbolic notation for design features, relations and structures. Mach. Eng. 20(1), 112–120 (2015)Google Scholar
  14. 14.
    Tuchołka, A., Majewski, M., Kacalak, W., Budniak, Z.: A method for intelligent quality assessment of a gearbox using antipatterns and convolutional neural networks. In: Silhavy, R. (ed.) Artificial Intelligence and Algorithms in Intelligent Systems. Advances in Intelligent Systems and Computing, vol. 764, pp. 57–68. Springer, Cham (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrzej Tuchołka
    • 1
    Email author
  • Maciej Majewski
    • 1
  • Wojciech Kacalak
    • 1
  • Zbigniew Budniak
    • 1
  1. 1.Faculty of Mechanical EngineeringKoszalin University of TechnologyKoszalinPoland

Personalised recommendations