Advertisement

Fuzzy Hit-or-Miss Transform Using Uninorms

  • Pedro Bibiloni
  • Manuel González-Hidalgo
  • Sebastia Massanet
  • Arnau Mir
  • Daniel Ruiz-Aguilera
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11144)

Abstract

The Hit-or-Miss transform (HMT) is a morphological operator which has been successfully used to identify shapes and patterns satisfying certain geometric restrictions in an image. Recently, a novel HMT operator, called the fuzzy morphological HMT, was introduced within the framework of the fuzzy mathematical morphology based on fuzzy conjunctions and fuzzy implication functions. Taking into account that the particular case of considering a t-norm as fuzzy conjunction and its residual implication as fuzzy implication functions has proved its potential in several applications, in this paper, the case when residual implications derived from uninorms and a general fuzzy conjunction, possibly a t-norm or the same uninorm, is deeply analysed. In particular, some theoretical results related to properties desirable for the applications are proved. Finally, some experimental results are presented showing the potential of this choice of operator to detect shapes and patterns in images.

Keywords

Fuzzy hit-or-miss transform Fuzzy mathematical morphology Uninorm Fuzzy implication function 

References

  1. 1.
    Aptoula, E., Lefèvre, S., Ronse, C.: A hit-or-miss transform for multivariate images. Pattern Recognit. Lett. 30(8), 760–764 (2009)CrossRefGoogle Scholar
  2. 2.
    Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing, vol. 231. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-69082-5CrossRefzbMATHGoogle Scholar
  3. 3.
    Barat, C., Ducottet, C., Jourlin, M.: Pattern matching using morphological probing. In: Proceedings of the International Conference on Image Processing, ICIP 2003, vol. 1, pp. 369–372 (2003)Google Scholar
  4. 4.
    Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Studies in Fuzziness and Soft Computing, vol. 221. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73721-6CrossRefzbMATHGoogle Scholar
  5. 5.
    Bloch, I., Maître, H.: Fuzzy mathematical morphologies: a comparative study. Pattern Recognit. 28, 1341–1387 (1995)MathSciNetCrossRefGoogle Scholar
  6. 6.
    De Baets, B.: Fuzzy morphology: a logical approach. In: Ayyub, B.M., Gupta, M.M. (eds.) Uncertainty Analysis in Engineering and Science: Fuzzy Logic. Statistics, and Neural Network Approach, pp. 53–68. Kluwer Academic Publishers, Norwell (1997)Google Scholar
  7. 7.
    De Baets, B., Fodor, J.: Residual operators of uninorms. Soft Comput. 3, 89–100 (1999)CrossRefGoogle Scholar
  8. 8.
    De Baets, B., Kerre, E., Gupta, M.: The fundamentals of fuzzy mathematical morphologies part I: basics concepts. Int. J. Gen. Syst. 23, 155–171 (1995)CrossRefGoogle Scholar
  9. 9.
    De Baets, B., Kwasnikowska, N., Kerre, E.: Fuzzy morphology based on uninorms. In: Proceedings of the Seventh IFSA World Congress, Prague, pp. 215–220 (1997)Google Scholar
  10. 10.
    Deng, T.-Q.: Fuzzy logic and mathematical morphology. Technical report. Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands, October 2000Google Scholar
  11. 11.
    González, M., Ruiz-Aguilera, D., Torrens, J.: Algebraic properties of fuzzy morphological operators based on uninorms. In: Artificial Intelligence Research and Development. Frontiers in Artificial Intelligence and Applications, vol. 100, pp. 27–38. IOS Press (2003)Google Scholar
  12. 12.
    González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: On the choice of the pair conjunction-implication into the fuzzy morphological edge detector. IEEE Trans. Fuzzy Syst. 23(4), 872–884 (2015)CrossRefGoogle Scholar
  13. 13.
    González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: A fuzzy morphological hit-or-miss transform for grey-level images. Fuzzy Sets Syst. 286(C), 30–65 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    González-Hidalgo, M., Mir-Torres, A.: Noise reduction using alternate filters generated by fuzzy mathematical operators using uninorms (\(\phi \)MM-U morphology). In: Burillo, P. (ed.) EUROFUSE Workshop 2009. Preference Modelling and Decision Analysis, pp. 233–238. Public University of Navarra, Pamplona (2009)Google Scholar
  15. 15.
    González-Hidalgo, M., Mir-Torres, A., Ruiz-Aguilera, D., Torrens, J.: Image analysis applications of morphological operators based on uninorms. In: Carvalho, P., et al. (eds.) Proceedings of the IFSA-EUSFLAT 2009 Conference, Lisbon, Portugal, pp. 630–635 (2009)Google Scholar
  16. 16.
    Heijmaans, H.: Morphological Image Operators. Academic Press, Boston (1994)Google Scholar
  17. 17.
    Khosravi, M., Schafer, R.W.: Template matching based on a grayscale hit-or-miss transform. IEEE Trans. Image Process. 5(6), 1060–1066 (1996)CrossRefGoogle Scholar
  18. 18.
    Klement, E., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, London (2000)CrossRefGoogle Scholar
  19. 19.
    Mas, M., Massanet, S., Ruiz-Aguilera, D., Torrens, J.: A survey on the existing classes of uninorms. J. Intell. Fuzzy Syst. 29, 1021–1037 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Matheron, G.: Random Sets and Integral Geometry. Wiley, Hoboken (1975)zbMATHGoogle Scholar
  21. 21.
    Nachtegael, M., Kerre, E.: Classical and fuzzy approaches towards mathematical morphology, Chap. 1. In: Kerre, E.E., Nachtegael, M. (eds.) Fuzzy Techniques in Image Processing. Studies in Fuzziness and Soft Computing, vol. 52, pp. 3–57. Physica-Verlag, New York (2000)CrossRefGoogle Scholar
  22. 22.
    Naegel, B., Passat, N., Ronse, C.: Grey-level hit-or-miss transforms-part I: unified theory. Pattern Recognit. 40, 635–647 (2007)CrossRefGoogle Scholar
  23. 23.
    Ouyang, Y.: On fuzzy implications determined by aggregation operators. Inf. Sci. 193, 153–162 (2012)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Perret, B., Lefèvre, S., Collet, C.: A robust hit-or-miss transform for template matching applied to very noisy astronomical images. Pattern Recognit. 42, 2470–24890 (2009)CrossRefGoogle Scholar
  25. 25.
    Popov, A.T.: General approach for fuzzy mathematical morphology. In: Proceedings of 8th International Symposium on Mathematical Morphology, ISMM, pp. 39–48 (2007)Google Scholar
  26. 26.
    Raducanu, B., Grana, M.: A grayscale hit-or-miss transform based on level sets. In: Proceedings of the IEEE International Conference on Image Processing, Vancouver, BC, Canada, pp. 931–933 (2000)Google Scholar
  27. 27.
    Ruiz, D., Torrens, J.: Residual implications and co-implications from idempotent uninorms. Kybernetika 40, 21–38 (2004)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Ruiz-Aguilera, D., Torrens, J., De Baets, B., Fodor, J.: Some remarks on the characterization of idempotent uninorms. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 425–434. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14049-5_44CrossRefGoogle Scholar
  29. 29.
    Schaefer, R., Casasent, D.: Nonlinear optical hit–miss transform for detection. Appl. Opt. 34(20), 3869–3882 (1995)CrossRefGoogle Scholar
  30. 30.
    Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, London (1982)zbMATHGoogle Scholar
  31. 31.
    Sinha, D., Sinha, P., Douherty, E., Batman, S.: Design and analysis of fuzzy morphological algorithms for image processing. IEEE Trans. Fuzzy Syst. 5(4), 570–584 (1997)CrossRefGoogle Scholar
  32. 32.
    Soille, P.: Morphological Image Analysis, 2nd edn. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-662-05088-0CrossRefzbMATHGoogle Scholar
  33. 33.
    Velasco-Forero, S., Angulo, J.: Hit-or-miss transform in multivariate images. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010. LNCS, vol. 6474, pp. 452–463. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17688-3_42CrossRefGoogle Scholar
  34. 34.
    Weber, J., Lefèvre, S.: Spatial and spectral morphological template matching. Image Vis. Comput. 30, 934–945 (2012)CrossRefGoogle Scholar
  35. 35.
    Yager, R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80, 111–120 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Computer Science Soft Computing, Image Processing and Aggregation (SCOPIA) Research GroupUniversity of the Balearic IslandsPalma de MallorcaSpain
  2. 2.Balearic Islands Health Research Institute (IdISBa)PalmaSpain

Personalised recommendations