Sugeno Integrals and the Commutation Problem

  • Didier Dubois
  • Hélène Fargier
  • Agnès Rico
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11144)


In decision problems involving two dimensions (like several agents and several criteria) the properties of expected utility ensure that the result of a multicriteria multiperson evaluation does not depend on the order with which the aggregations of local evaluations are performed (agents first, criteria next, or the converse). We say that the aggregations on each dimension commute. Ben Amor, Essghaier and Fargier have shown that this property holds when using pessimistic possibilistic integrals on each dimension, or optimistic ones, while it fails when using a pessimistic possibilistic integral on one dimension and an optimistic one on the other. This paper studies and completely solves this problem when Sugeno integrals are used in place of possibilistic integrals, indicating that there are capacities other than possibility and necessity measures that ensure commutation of Sugeno integrals.


Capacities Sugeno integrals Possibility theory Commutation 



This work is supported by ANR-11-LABX-0040-CIMI (Centre International de Mathématiques et d’Informatique) within the program ANR-11-IDEX-0002-02, project ISIPA.


  1. 1.
    Behrisch, M., Couceiro, M., Kearnes, K.A., Lehtonen, E., Szendrei, A.: Commuting polynomial operations of distributive lattices. Order 29(2), 245–269 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ben Amor, N., Essghaier, F., Fargier, H.: Solving multi-criteria decision problems under possibilistic uncertainty using optimistic and pessimistic utilities. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014. CCIS, vol. 444, pp. 269–279. Springer, Cham (2014). Scholar
  3. 3.
    Ben Amor, N., Essghaier, F., Fargier, H.: Décision collective sous incertitude possibiliste. Principes et axiomatisation. Revue d’Intelligence Artificielle 29(5), 515–542 (2015)CrossRefGoogle Scholar
  4. 4.
    Ben Amor, N., Essghaier, F., Fargier, H.: Egalitarian collective decision making under qualitative possibilistic uncertainty: principles and characterization. In: Proceedings of AAAI 2015, pp. 3482–3488. AAAI Press (2015)Google Scholar
  5. 5.
    Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)CrossRefGoogle Scholar
  6. 6.
    Dubois, D., Prade, H., Sabbadin, R.: Decision theoretic foundations of qualitative possibility theory. Eur. J. Oper. Res. 128, 459–478 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Goodstein, R.L.: The solution of equations in a lattice. Proc. Roy. Soc. Edinb. Sect. A 67, 231–242 (1967)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Grabisch, M.: The Möbius transform on symmetric ordered structures and its application to capacities on finite sets. Discrete Math. 287, 17–34 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Halas, R., Mesiar, R., Pocs, J., Torra, V.: A note on discrete Sugeno integrals: composition and associativity. Fuzzy Sets Syst. (2018, to appear)Google Scholar
  10. 10.
    Harsanyi, J.: Cardinal welfare, individualistic ethics, and interpersonal comparisons of utility. J Polit. Econ. 63, 309–321 (1955)CrossRefGoogle Scholar
  11. 11.
    Marichal, J.-L.: On Sugeno integrals as an aggregation function. Fuzzy Sets Syst. 114(3), 347–365 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Narukawa, Y., Torra, V.: Multidimensional generalized fuzzy integral. Fuzzy Sets Syst. 160(6), 802–815 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Myerson, R.: Utilitarianism, egalitarianism, and the timing effect in social choice problems. Econometrica 49, 883–97 (1981)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sugeno, M.: Theory of fuzzy integrals and its applications. Ph.D. thesis. Tokyo Institute of Technology, Tokyo (1974)Google Scholar
  15. 15.
    Sugeno,M.: Fuzzy measures and fuzzy integrals: a survey. In: Gupta, M.M., Saridis, G.N., Gaines, B.R. (eds.) Fuzzy Automata and Decision Processes, North-Holland, pp. 89–102 (1977)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.IRIT, Université Paul SabatierToulouse Cedex 9France
  2. 2.ERIC, Université Claude Bernard Lyon 1VilleurbanneFrance

Personalised recommendations