On k-\(\oplus \)-additive Aggregation Functions

  • Fateme Kouchakinejad
  • Anna Kolesárová
  • Radko Mesiar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11144)


To generalize the concept of k-maxitivity and k-additivity, we introduce k-\(\oplus \)-additive aggregation functions. We also characterize this kind of aggregation functions under some special conditions. Several examples are given to illustrate the new definitions.


k-additivity k-maxitivity k-\(\oplus \)-additive aggregation function Pseudo-addition 



The work on this contribution was supported by the grants APVV-14-0013 and APVV-17-0066. Fateme Kouchakinejad kindly acknowledges the support from Iran National Science Foundation: INSF.


  1. 1.
    Choquet, G.: Theory of capacities. Ann. Inst. Fourier. 5, 131–295 (1953)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Grabisch, M.: k-order additive discrete fuzzy measures and their representation. Fuzzy Sets Syst. 92, 167–189 (1997)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  4. 4.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht (2000)CrossRefGoogle Scholar
  5. 5.
    Kolesárová, A., Li, J., Mesiar, R.: k-additive aggregation functions and their characterization. Eur. J. Operat. Res. 265, 985–992 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Mesiar, R.: k-order pan-discrete fuzzy measures. In: 7th IFSA World Congress, Prague, pp. 488–490 (1997)Google Scholar
  7. 7.
    Mesiar, R., Kolesárová, A.: k-maxitive aggregation functions. Fuzzy Sets Syst. 346, 127–137 (2018). Scholar
  8. 8.
    Owen, G.: Multilinear extensions of games. In: Roth, A.E. (ed.) The Shapley value. Essays in Honour of Lloyd S. Shapley, pp. 139–151. Cambridge University Press (1988)Google Scholar
  9. 9.
    Shilkret, N.: Maxitive measure and integration. Indag. Math. 33, 109–116 (1971)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Sugeno, M., Murofushi, T.: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122, 197–222 (1987)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Sugeno, M.: Theory of fuzzy integrals and its applications. Ph.D. thesis, Tokyo Institute of Technology (1974)Google Scholar
  12. 12.
    Weber, S.: \(\perp \)-decomposable measures integrals for Archimedean \(t\)-conorms \( \perp \). J. Math. Anal. Appl. 101, 114–138 (1984)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Fateme Kouchakinejad
    • 1
  • Anna Kolesárová
    • 2
  • Radko Mesiar
    • 3
  1. 1.Department of Statistics, Faculty of Mathematics and Computer ScienceShahid Bahonar University of KermanKermanIran
  2. 2.Institute of Information Engineering, Automation and Mathematics, Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovakia
  3. 3.Department of Mathematics and Descriptive Geometry, Faculty of Civil EngineeringSlovak University of TechnologyBratislavaSlovakia

Personalised recommendations