Advertisement

Application of Ontology Modularization for Building a Criminal Domain Ontology

  • Mirna El GhoshEmail author
  • Hala Naja
  • Habib Abdulrab
  • Mohamad Khalil
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10791)

Abstract

The Ontology modularization is an essential field in the ontology engineering domain helping to reduce the complexity and the difficulties of building, reusing, managing and reasoning on domain ontologies either by applying partitioning or composition approaches. This paper carries out a survey on ontology modularization and presents a modular approach to build criminal modular domain ontology (CriMOnto) for modelling the legal norms of the Lebanese criminal system. CriMOnto, which will be used later for a legal reasoning system, is composed of four independent modules. The modules will be combined together to compose the whole ontology.

Keywords

Ontology modularization Modular ontology Ontology composition Ontology integration Ontology reuse Criminal domain CriMOnto 

Notes

Acknowledgements

This work has been supported by the European Union with the European Regional Development Fund (ERDF) under Grant Agreement no. HN0002134 in the project CLASSE 2 (“Les Corridors Logistiques: Application a la Vallée de la Seine et son Environnement”), Lebanese University and the National Support from the National Council for Scientific Research in Lebanon (CNRS).

References

  1. 1.
    Corcho, O., Fernández-López, M., Gómez-Pérez, A.: Ontological engineering: what are ontologies and how can we build them? In: Jorge, C. (ed.) Semantic Web Services: Theory, Tools and Applications, pp. 44–70. IGI Global, Hershey (2007)CrossRefGoogle Scholar
  2. 2.
    Pathak, J., Johnson, T.M., Chute, C.G.: Modular ontology techniques and their applications in the biomedical domain. Integr. Comput. Aid. Eng. 16(3), 225–242 (2009)CrossRefGoogle Scholar
  3. 3.
    d’Aquin, M., Schlicht, A., Stuckenschmidt, H., Sabou, M.: Ontology modularization for knowledge selection: experiments and evaluations. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 874–883. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74469-6_85CrossRefGoogle Scholar
  4. 4.
    Gangemi, A., Catenacci, C., Battaglia, M.: Inflammation ontology design pattern: an exercise in building a core biomedical ontology with descriptions and situations. Stud. Health Technol. Inform. 102, 64–80 (2004)Google Scholar
  5. 5.
    Fürst, F., Trichet, F.: Integrating domain ontologies into knowledge-based systems. In: FLAIRS Conference, pp. 826–827 (2005)Google Scholar
  6. 6.
    Wang, Y., Bao, J., Haase, P., Qi, G.: Evaluating formalisms for modular ontologies in distributed information systems. In: marchiori, m, Pan, Jeff Z., Marie, C. (eds.) RR 2007. LNCS, vol. 4524, pp. 178–193. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72982-2_13CrossRefGoogle Scholar
  7. 7.
    Hois, J., Bhatt, M., Kutz, O.: Modular ontologies for architectural design. In: FOMI-09, Frontiers in Artificial Intelligence and Applications, vol. 198. IOS Press, Vicenza (2009)Google Scholar
  8. 8.
    Khan, Z.C., Keet, C.M.: Toward a framework for ontology modularity. In: The 2015 Annual Research Conference on South African Institute of Computer Scientists and Information Technologists. SAICSIT 2015, Article No. 24 (2015)Google Scholar
  9. 9.
    Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D.: Integrating a bottom–up and top–down methodology for building semantic resources for the multilingual legal domain. In: Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D. (eds.) Semantic Processing of Legal Texts. LNCS (LNAI), vol. 6036, pp. 95–121. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12837-0_6CrossRefGoogle Scholar
  10. 10.
    Saias, J., Quaresma, P.: A methodology to create legal ontologies in a logic programming information retrieval system. In: Benjamins, V.Richard, Casanovas, P., Breuker, J., Gangemi, A. (eds.) Law and the Semantic Web. LNCS (LNAI), vol. 3369, pp. 185–200. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-32253-5_12CrossRefGoogle Scholar
  11. 11.
    Turlapati, V.K.C., Puligundla, S.K.: Efficient module extraction for large ontologies. In: Klinov, P., Mouromtsev, D. (eds.) KESW 2013. CCIS, vol. 394, pp. 162–176. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41360-5_13CrossRefGoogle Scholar
  12. 12.
    Abbes, S.B., Scheuermann, A., Meilender, T., d’Aquin, M.: Characterizing modular ontologies. In: 7th International Conference on Formal Ontologies in Information Systems (FOIS), pp. 13–25 (2012)Google Scholar
  13. 13.
    Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: A logical framework for modularity of ontologies. In: IJCAI 2007, pp. 298–303. AAAI Press (2007)Google Scholar
  14. 14.
    Grau, B.C., Kutz, O.: Modular ontology languages revisited. In: The IJCAI-2007 Workshop on Semantic Web for Collaborative Knowledge Acquisition (2007)Google Scholar
  15. 15.
    Konev, B., Lutz, C., Walther, D., Wolter, F.: Formal properties of modularisation. In: Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.) Modular Ontologies. LNCS, vol. 5445, pp. 25–66. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01907-4_3CrossRefGoogle Scholar
  16. 16.
    Doran, P.: Ontology reuse via ontology modularization. In: Proceedings of Knowledge Web Ph.D. Symposium, pp. 1–6 (2006)Google Scholar
  17. 17.
    Bezerra, C., Freitas, F., Zimmermann, A., Euzenat, J.: ModOnto: a tool for modularizing ontologies. In: WONTO-08, vol. 427 (2008). ceur-ws.org
  18. 18.
    Grau, B.C., Parsia, B., Sirin, E., Kalyanpur, A.: Modularity and web ontologies. In: KR, pp. 198–209 (2006)Google Scholar
  19. 19.
    Stuckenschmidt, H., Klein, M.: Reasoning and change management in modular ontologies. Data Knowl. Eng. 63(2), 200–223 (2007)CrossRefGoogle Scholar
  20. 20.
    Stuckenschmidt, H., Klein, M.: Integrity and change in modular ontologies. In: 18th International Joint Conference on Artificial Intelligence, pp. 900–905 (2003)Google Scholar
  21. 21.
    d’Aquin, M., Schlicht, A., Stuckenschmidt, H., Sabou, M.: Criteria and evaluation for ontology modularization techniques. In: Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.) Modular Ontologies. LNCS, vol. 5445, pp. 67–89. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01907-4_4CrossRefGoogle Scholar
  22. 22.
    Del Vescovo, C., Parsia, B., Sattler, U., Schneider, T.: The modular structure of an ontology: an empirical study. Technical report, University of Manchester. http://www.cs.man.ac.uk/%7Eschneidt/publ/modstrucreport.pdf
  23. 23.
    Del Vescovo, C., Parsia, B., Sattler, U., Schneider, T.: The modular structure of an ontology: an empirical study. In: Haarslev, V, Toman, D., Weddell, G. (eds.), DL 2010, vol. 573 (2010). ceur-ws.org
  24. 24.
    Borgo, S.: Goals of modularity: a voice from the foundational viewpoint. In: Kutz, O., Schneider, T. (eds.) Fifth International Workshop on Modular Ontologies, Frontiers in Artificial Intelligence and Applications, vol. 230, pp. 1–6. IOS Press (2011)Google Scholar
  25. 25.
    Studer, T.: Privacy preserving modules for ontologies. In: Pnueli, A., Virbitskaite, I., Voronkov, A. (eds.) PSI 2009. LNCS, vol. 5947, pp. 380–387. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11486-1_32CrossRefGoogle Scholar
  26. 26.
    Del Vescovo, C., et al.: The modular structure of an ontology: atomic decomposition. In: IJCAI Proceedings-International Joint Conference on Artificial Intelligence, vol. 22 (2011)Google Scholar
  27. 27.
    Cuenca Grau, B., Halaschek-Wiener, C., Kazakov, Y.: History matters: incremental ontology reasoning using modules. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 183–196. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76298-0_14CrossRefGoogle Scholar
  28. 28.
    Guarino, N., Carrara, Giaretta, P.: An ontology of meta-level categories. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of KR94. Morgan Kaufmannn, San Mateo (1994)CrossRefGoogle Scholar
  29. 29.
    Guarino, N.: Understanding, building, and using ontologies. Int. J. Hum. Comput. Stud. 46(2–3), 293–310 (1997)CrossRefGoogle Scholar
  30. 30.
    Van Heijst, G., Schreiber, A., Th Wielinga, B.G.: Using explicit ontologies in KBS development. Int. J. Hum. Comput. Stud. 46, 2–3 (1997)zbMATHGoogle Scholar
  31. 31.
    Stuckenschmidt, H., Christine, P., Spaccapietra, S.: Modular Ontologies: Concepts, Theories and Techniques for Knowledge Modularization. Springer, Berlin (2009).  https://doi.org/10.1007/978-3-642-01907-4CrossRefzbMATHGoogle Scholar
  32. 32.
    Ben Mustapha, N., Baazaoui-Zghal, H., Moreno, A., Ben Ghezala, H.: A dynamic composition of ontology modules approach: application to web query reformulation. Int. J. Metadata Semant. Ontol. 8(4), 309–321 (2013)CrossRefGoogle Scholar
  33. 33.
    Bezerra, C., Freitas, F., Euzenat, J., Zimmermann, A.: An approach for ontology modularization (2008)Google Scholar
  34. 34.
    Dmitrieva, J., Verbeek, F.J.: Creating a New Ontology: A Modular Approach. arXiv preprint arXiv:1012.1658 (2010)
  35. 35.
    Steve, G., Gangemi, A., Pisanelli, D.: Integrating medical terminologies with onions methodology (1998)Google Scholar
  36. 36.
    El Ghosh, M., Naja, H., Abdulrab, H., Khalil, M.: Towards a middle-out approach for building legal domain reference ontology. Int. J. Knowl. Eng. 2(3), 109–114 (2016)CrossRefGoogle Scholar
  37. 37.
    Pinto, H., Martins, J.: Ontology integration: how to perform the process. In: The International Joint Conference on Artificial Intelligence, pp. 71–80 (2001)Google Scholar
  38. 38.
    Bontas, E.P., Mochol, M., Tolksdorf, R.: Case studies on ontology reuse. In: IKNOW05 International Conference on Knowledge Management, vol. 74 (2005)Google Scholar
  39. 39.
    Caldarola, E.G., Picariello, A., Rinaldim A.M.: An approach to ontology integration for ontology reuse in knowledge based digital ecosystems. In: 7th International Conference on Management of computational and Collective intElligence in Digital EcoSystems, pp. 1–8. ACM (2015)Google Scholar
  40. 40.
    Modoni, G., Caldarola, E., Terkaj, W., Sacco, M.: The knowledge reuse in an industrial scenario: a case study. In: The Seventh International Conference on Information, Process, and Knowledge Management eKNOW 2015, pp. 66–71 (2015)Google Scholar
  41. 41.
    Pinto, S.H., Gomez-Perez, A., Martins, J.P.: Some issues on ontology integration. In: IJCAI99’s Workshop on Ontologies and Problem Solving Methods: Lessons Learned and Future Trends (1999)Google Scholar
  42. 42.
    Guizzardi, G.: The role of foundational ontology for conceptual modeling and domain ontology representation. In: 7th International Baltic Conference on Databases and Information Systems, pp. 17–25 (2006)Google Scholar
  43. 43.
    Keet, M.: The use of foundational ontologies in ontology development: an empirical assessment. In: 8th Extended Semantic Web Conference, Greece, vol. 6643, pp. 321–335 (2011)Google Scholar
  44. 44.
    Rosa, D.E., Carbonera, J.L., Torres, G.M., Abel, M.: Using events from UFO-B in an ontology collaborative construction environment. CEUR-WSX 938, 278–283 (2012)Google Scholar
  45. 45.
    Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Wonderweb deliverable D18 (ver. 1.0). Ontology Library (2003)Google Scholar
  46. 46.
    Guizzardi, G., Wagner, G.: A unified foundational ontology and some applications of it in business modeling. In: CAiSE Workshops, vol. 3, pp. 129–143 (2004)Google Scholar
  47. 47.
    Guizzardi, G., Wagner, G.: Using UFO as a foundation for general conceptual modeling languages. In: Poli, R., Healy, M., Kameas, A. (eds.) Theory and Applications of Ontology: Computer Applications, pp. 175–196. Springer, Dordrecht (2010).  https://doi.org/10.1007/978-90-481-8847-5_8CrossRefGoogle Scholar
  48. 48.
    Melo, S., Almeida, M.B.: Applying foundational ontologies in conceptual modeling: a case study in a Brazilian public company. In: Meersman, R. (ed.) On the Move to Meaningful Internet Systems: OTM 2014 Workshops, pp. 577–586. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45550-0_59CrossRefGoogle Scholar
  49. 49.
    Guizzardi, G., Wagner, G.: Towards ontological foundations for agent modelling concepts using the unified fundational ontology (UFO). In: Bresciani, P., Giorgini, P., Henderson-Sellers, B., Low, G., Winikoff, M. (eds.) AOIS -2004. LNCS (LNAI), vol. 3508, pp. 110–124. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426714_8CrossRefGoogle Scholar
  50. 50.
    Guizzardi, G.: Ontological foundations for structural conceptual models. Ph.D. thesis. Enschede, Telematica Institut, The Netherlands (2005)Google Scholar
  51. 51.
    Guerson, J., Sales, T.P., Guizzardi, G., Almeida, J.P.A.: OntoUML lightweight editor: a model-based environment to build, evaluate and implement reference ontologies. In: IEEE 19th International Enterprise Distributed Object Computing Workshop (EDOCW), pp. 144–147 (2015)Google Scholar
  52. 52.
  53. 53.
  54. 54.
    Guizzardi, G., Falbo, R. A., Guizzardi, R.S.S.: Grounding software domain ontologies in the unified foundational ontology (UFO): the case of the ODE software process ontology. In: Proceedings of the Ibero American Workshop on Requirements Engineering and Software Environments, pp. 244–251 (2008)Google Scholar
  55. 55.
    Barcelos, P.P.F., dos Santos, V.A., Silva, F.B., Monteiro, M.E., Garcia, A.S.: An automated transformation from OntoUML to OWL and SWRL. In: ONTOBRAS 2013. CEUR Workshop Proceedings, vol. 1041, CEUR-WS.org, pp. 130–141 (2013)Google Scholar
  56. 56.
    Guizzardi, G., Wagner, G., Falbo, A., Guizzardi, R.S.S., Almeida, J.P.A.: Towards ontological foundations for the conceptual modeling of events. In: 32th International Conference, ER 2013, pp. 327–341 (2013)CrossRefGoogle Scholar
  57. 57.
    Hoekstra, R., Breuker, J., Bello, M.D., Boer, A.: The LKIF core ontology of basic legal concepts. In: Workshop on Legal Ontologies and Artificial Intelligence Techniques, CEUR Workshop Proceedings, vol. 321, pp. 43–63 (2007)Google Scholar
  58. 58.
    El Ghosh, M., Naja, H., Abdulrab, H., Khalil, M.: Ontology learning process as a bottom-up strategy for building domain-specific ontology from legal texts. In: The 9th International Conference on Agents and Artificial Intelligence, ICAART, vol. 2, pp. 473–480 (2017)Google Scholar
  59. 59.
    Gómez-Pérez, A., Rojas-Amaya, M.D.: Ontological reengineering for reuse. In: Fensel, D., Studer, R. (eds.) EKAW 1999. LNCS (LNAI), vol. 1621, pp. 139–156. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48775-1_9CrossRefGoogle Scholar
  60. 60.
    Kalfoglou, Y., Schorlemmer, W.M.: Ontology mapping: the state of the art. In: Semantic Interoperability and Integration (2005)Google Scholar
  61. 61.
    Dmitrieva, J., Verbeek, F.: Modular approach for a new ontology. In: 5th International Workshop on Modular Ontologies WoMO (2011)Google Scholar
  62. 62.
    Ghazvinian, A., Noy, N.F., Musen, M.A.: Creating mappings for ontologies in biomedicine: simple methods work. In: AMIA 2009 Symposium Proceedings (2009)Google Scholar
  63. 63.
    Euzenat, J.: Semantic precision and recall for ontology alignment evaluation. In: IJCAI, pp. 348–353 (2007)Google Scholar
  64. 64.
    Borgida, A., Serani, L.: Distributed description logics: assimilating information from peer sources. J. Data Semant. 1, 153–184 (2003)zbMATHGoogle Scholar
  65. 65.
    Jimenez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Ontology integration using mappings: towards getting the right logical consequences. Technical report, Universitat Jaume, University of Oxford (2008)Google Scholar
  66. 66.
    Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL 2: the next step for OWL. J. Web Semant. 6(4), 309–322 (2008)CrossRefGoogle Scholar
  67. 67.
    Wang, Y., Liu, W., Bell, D.: A concept hierarchy based ontology mapping approach. In: KSEM, pp. 101–113 (2010)Google Scholar
  68. 68.
    Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38, 39–41 (1995)CrossRefGoogle Scholar
  69. 69.
    Hartmann, J., et al.: Methods for ontology evaluation. In: Knowledge Web Deliverable D1.2.3 (2004)Google Scholar
  70. 70.
    Gómez-Pérez, A., Fernandez-Lopez, A., Corcho, O.: Ontological Engineering. Springer, London (2004).  https://doi.org/10.1007/b97353CrossRefGoogle Scholar
  71. 71.
    Gómez-Pérez, A.: Evaluation of ontologies. Int. J. Intell. Syst. 16, 391–409 (2011)CrossRefGoogle Scholar
  72. 72.
    Legat, C.: Semantics to the shop floor: towards ontology modularization and reuse in the automation domain. In: World Congress (2014)CrossRefGoogle Scholar
  73. 73.
    Thakker, D., Dimitrova, V., Lau, L., Denaux, R., Karanasios, S., Yang Turner, F.: A priori ontology modularisation in ill-defined domains. In: 7th International Conference on Semantic Systems, I-Semantics 2011, pp. 167–170 (2011)Google Scholar
  74. 74.
    Bakhshandeh, M., Antunes, G., Mayer, R., Borbinha, J., Caetano, A.: A modular ontology for the enterprise architecture domain. In: 17th IEEE International Enterprise Distributed Object Computing Conference Workshops, EDOCW 2013, pp. 5–12 (2013)Google Scholar
  75. 75.
    Brank, J., Grobelnik, M., Mladenic, D.: A survey of ontology evaluation techniques. In: Conference on Data Mining and Data Warehouses (SiKDD) (2005)Google Scholar
  76. 76.
    Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J.: Modelling ontology evaluation and validation. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 140–154. Springer, Heidelberg (2006).  https://doi.org/10.1007/11762256_13CrossRefGoogle Scholar
  77. 77.
    Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A., Benjamins, V.Richard (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45810-7_24CrossRefzbMATHGoogle Scholar
  78. 78.
    Brewster, C., Alani, H., Dasmahapatra, S., Wilks, Y.: Data driven ontology evaluation. In: International Conference on Language Resources and Evaluation, Lisbon (2004)Google Scholar
  79. 79.
    Ding, L., et al.: Swoogle: a search and metadata engine for the semantic web. In: CIKM, pp. 652–659 (2004)Google Scholar
  80. 80.
    Porzel, R., Malaka, R.: A task-based approach for ontology evaluation. In: ECAI 2004 Workshop Ontology Learning and Population, Valencia, Spain, pp. 1–6 (2004)Google Scholar
  81. 81.
    Patel, C., Supekar, K., Lee, Y., Park, E.: OntoKhoj: a semantic web portal for ontology searching, ranking and classification. In: Proceedings of the 5th ACM International Workshop on Web Information and Data Management. ACM (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mirna El Ghosh
    • 1
    Email author
  • Hala Naja
    • 2
  • Habib Abdulrab
    • 1
  • Mohamad Khalil
    • 3
  1. 1.LITIS, INSARouenFrance
  2. 2.Faculty of SciencesLebanese UniversityTripoliLebanon
  3. 3.Faculty of Engineering, CRSI Research CenterLebanese UniversityTripoliLebanon

Personalised recommendations