Advertisement

Analysis of Legal References in an Emergency Legislative Setting

  • Monica PalmiraniEmail author
  • Ilaria BianchiEmail author
  • Luca CervoneEmail author
  • Francesco Draicchio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10791)

Abstract

The earthquake struck in Emilia-Romagna Region on 2012 and it created a disaster area with 33 municipalities involved and extended over 3,173 square meters across the region. The Commissioner for Emergencies issued 350 ordinances deliberated over a three-year period (2012–2015), so as to support the rebuilding, aid for the population, organization of the territory. The main goal of this paper is to present the outcome of a research that investigated the corpus of legislative ordinances in the first 18 months in order to discover if they were an effective legislative instrument in emergency settings. Analyzing the legal citations and the correspondent references we have discovered some dysfunctional behaviour in the lawmaking system, too much concentrated on some topics. We have detected weaknesses in normative area that could orient a more coordinated legislative action at the national level. The final findings help the lawmaker act better in future disasters, extract information concerning the number and the types of modifications produced, and support the debate on a national law on emergency in the wake of natural disasters.

Keywords

NLP URI Legal XML Modifications Visualization Network analysis 

References

  1. Bartolini, R., Lenci, A., Montemagni, S., Pirrelli, V., Soria, C.: Semantic mark-up of italian legal texts through nlp-based techniques. Proceedings of LREC 2004, 795–798 (2004)Google Scholar
  2. Biagioli, C., Francesconi, E., Passerini, A., Montemagni, S., Soria, C.: Automatic semantics extraction in law documents. In: ICAIL 2005 Proceedings of the 10th International Conference on Artificial Intelligence and Law, pp. 133–140. ACM, New York (2005)Google Scholar
  3. Bommarito II, M.J., Katz, D.M.: A mathematical approach to the study of the united states code. Phys. A Stat. Mech. Appl. 389(19), 4195–4200 (2010)CrossRefGoogle Scholar
  4. Bommarito II, M.J., Katz, D.M.: Measuring and Modeling the U.S. Regulatory Ecosystem. J. Stat. Phys. 168, 1125–1135 (2017)CrossRefGoogle Scholar
  5. Boulet, R., Mazzega, P., Bourcier, D.: Network analysis of the French environmental code. In: Casanovas, P., Pagallo, U., Sartor, G., Ajani, G. (eds.) AICOL -2009. LNCS (LNAI), vol. 6237, pp. 39–53. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16524-5_4CrossRefGoogle Scholar
  6. Casanovas, P., Palmirani, M., Peroni, S., van Engers, T., Vitali, F.: Semantic web for the legal domain: the next step. Semant. Web 7(3), 213–227 (2016)CrossRefGoogle Scholar
  7. Francesconi, E., Passerini, A.: Automatic classification of provisions in legislative texts. Artif. Intell. Law 15(1), 1–17 (2007)CrossRefGoogle Scholar
  8. Koniaris, M., Vassiliou, I.A.Y.: Legislation as a complex network: modelling and analysis of European Union legal sources. In: Hoekstra, R. (ed.) Legal Knowledge and Information Systems. JURIX 2014: The Twenty-Seven International Conference. Frontiers in Artificial Intelligence and Applications, vol. 260, pp. 143–152. IOS Press, Amsterdam (2014)Google Scholar
  9. Lesmo, L., Mazzei, A., Palmirani, M., Radicioni, D.: TULSI: an NLP system for extracting legal modificatory provisions. Artif. Intell. Law J. 2013(21), 139–172 (2013)CrossRefGoogle Scholar
  10. de Maat, E., Winkels, R., van Engers, T.: Automated detection of reference structures in law. In: van Engers, T.M. (ed.) Legal Knowledge and Information Systems. Jurix 2006: The Nineteenth Annual Conference, vol. 152, pp. 41–50. IOS Press, Amsterdam (2006)Google Scholar
  11. van Opijnen, M., Palmirani M., Vitali, F., Agnoloni T.: Towards ECLI 2.0. In: 2017 International Conference for E-Democracy and Open Government, P6082, pp. 1–9. IEEE, Los Alamitos (2017). (atti di: 2017 International Conference for E-Democracy and Open Government, Krems, Austria, 17–19 May 2017)Google Scholar
  12. Palmirani, M., Benigni, F.: Norma-system: a legal information system for managing time. In: Proceedings of the V Legislative XML Workshop, European Press Academic Publishing, FIRENZE, pp. 205–224 (2007). (atti di: V Legislative XML Workshop, Fiesole, Firenze, Italia, 14–16 Giugno 2007)Google Scholar
  13. Palmirani, M., Brighi, R., Massini, M.: Processing normative references on the basis of natural language questions. In: DEXA 2004 Proceedings of the Database and Expert Systems Applications, 15th International Workshop, pp. 9–12. IEEE Computer Society (2004)Google Scholar
  14. Palmirani M., Brighi R.: Legal text analysis of the modification provisions: a pattern oriented approach. In: Proceedings of the International Conference on Artificial Intelligence and Law (ICAIL) (2009)Google Scholar
  15. Palmirani, M., Brighi, R.: Model regularity of legal language in active modifications. In: Casanovas, P., Pagallo, U., Sartor, G., Ajani, G. (eds.) AICOL -2009. LNCS (LNAI), vol. 6237, pp. 54–73. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16524-5_5CrossRefGoogle Scholar
  16. Palmirani, M., Brighi, R.: Time model for managing the dynamic of normative system. In: Wimmer, M.A., Scholl, H.J., Grönlund, Å., Andersen, K.V. (eds.) EGOV 2006. LNCS, vol. 4084, pp. 207–218. Springer, Heidelberg (2006).  https://doi.org/10.1007/11823100_19CrossRefGoogle Scholar
  17. Palmirani, M., Cervone, L.: Legal change management with a native XML repository. In: Governatori, G. (ed.) Legal Knowledge and Information Systems. JURIX 2009. The Twenty-Second Annual Conference, Rotterdam. 16th–18th December 2009, pp. 146–156. ISO Press, Amsterdam (2009)Google Scholar
  18. Palmirani, M., Cervone, L.: A multi-layer digital library for mediaeval legal manuscripts digital libraries and archives. In: Communications in Computer and Information ScienceDigital Libraries and Archives, Communications in Computer and Information Science 2013, vol. 354, pp. 81–92. Springer, Heidelberg, 9–10 February 2012. (atti di: IRCDL 2012, Bari) Google Scholar
  19. Palmirani, M., Cervone, L.: Measuring the complexity of the legal order over time. In: AI Approaches to the Complexity of Legal Systems, pp. 82–99. Springer, Heidelberg (2014)Google Scholar
  20. Palmirani, M., Vitali, F.: Akoma-Ntoso for legal documents. In: Sartor, G., Palmirani, M., Francesconi, E., Biasiotti, M. (eds.) Legislative XML for the Semantic Web. Law, Governance and Technology Series, vol. 4, pp. 75–100. Springer, Dordrecht (2011).  https://doi.org/10.1007/978-94-007-1887-6_6CrossRefGoogle Scholar
  21. Palmirani, M.: Legislative change management with Akoma-Ntoso. In: Sartor, G., Palmirani, M., Francesconi, E., Biasiotti, M. (eds.) Legislative XML for the Semantic Web. Law, Governance and Technology Series, vol. 4, pp. 101–130. Springer, Dordrecht (2011).  https://doi.org/10.1007/978-94-007-1887-6_7CrossRefGoogle Scholar
  22. Pavone, P., Righi, R., Righi, S., Russo, M.: Text mining and network analysis to support improvements in legislative action. In: The Case of the Earthquake in Emilia-Romagna, Proceedings JADT2016, 7–10 giugno 2016, Nizza, Francia, pp. 237–247 (2016). ISBN 978-2-7466-9067-7Google Scholar
  23. Waltl, B., Florian, M.: Towards measures of complexity: applying structural and linguistic metrics to german laws. In: Hoekstra, R. (ed.) Legal Knowledge and Information Systems. JURIX 2014: The Twenty-Seven International Conference. Frontiers in Artificial Intelligence and Applications, vol. 260, pp. 153–162. IOS Press, Amsterdam (2014)Google Scholar
  24. Winkels R, Boer A.: Finding and visualizing dutch legislative context networks. In: Network Analysis in Law. Diritto Scienza Tecnologia, pp. 157–182 (2014)Google Scholar
  25. Winkels, R., Boer, A., Plantevin, I.: Creating context networks in Dutch legislation. In: Ashley, K. (ed.) Legal Knowledge and Information Systems. JURIX 2013: The Twenty-Sixth International Conference. Frontiers in Artificial Intelligence and Applications, vol. 259, pp. 155–164. IOS Press, Amsterdam (2013)Google Scholar
  26. Winkels, R., de Ruyter, J.: Survival of the fittest: network analysis of Dutch Supreme Court Cases. In: Palmirani, M., Pagallo, U., Casanovas, P., Sartor, G. (eds.) AICOL 2011. LNCS (LNAI), vol. 7639, pp. 106–115. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-35731-2_7CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.CIRSFIDUniversity of BolognaBolognaItaly

Personalised recommendations