Advertisement

Experimental Methods and Investigations

  • Stephan Stuerwald
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 221)

Abstract

Real-time high-throughput identification, screening, characterisation, and processing of reflective and transparent phase objects like micro and nanostructures as well as biological specimen is of significant interest to a variety of applications from cell biology, medicine and even to lithography. In this chapter, new as well as conventional possibilities that arise from digital holographic microscopy (DHM) and holographic optical tweezers (HOTs) are demonstrated and discussed on experimental setups and corresponding findings. This comprises subsequent digital holographic focusing, DHM with partially coherent light sources such as superluminescence diodes (SLDs) and LEDs, the tayloring of the coherence length of these broadband light sources as well as the simulation and the design of HOT setups. Furthermore, the characterisation of spatial light modulators and of an overall system is treated including the determination of the optical force and trapping stability.

References

  1. 1.
    Poon, T.-C., Motamedi, M.: Optical/digital incoherent image processing for extended depth of field. Appl. Opt. 26(21), 4612–4615 (1987).  https://doi.org/10.1364/AO.26.004612ADSCrossRefGoogle Scholar
  2. 2.
    Dowski, E.R., Jr., Cathey, W.T.: Extended depth of field through wave-front coding. Appl. Opt. 34(11), 1859–1866 (1995).  https://doi.org/10.1364/AO.34.001859ADSCrossRefGoogle Scholar
  3. 3.
    Schnars, U., Jueptner, W.: Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33(2), 179–181 (1994).  https://doi.org/10.1364/AO.33.000179ADSCrossRefGoogle Scholar
  4. 4.
    Yamaguchi, I., Zhang, T.: Phase-shifting digital holography. Opt. Lett. 22(16), 1268–1270 (1997).  https://doi.org/10.1364/OL.22.001268ADSCrossRefGoogle Scholar
  5. 5.
    Zhang, T., Yamaguchi, I.: Three-dimensional microscopy with phase-shifting digital holography. Opt. Lett. 23(15), 1221–1223 (1998).  https://doi.org/10.1364/OL.23.001221ADSCrossRefGoogle Scholar
  6. 6.
    Cuche, E., Bevilacqua, F., Depeursinge, C.: Digital holography for quantitative phase-contrast imaging. Opt. Lett. 24(5), 291–293 (1999).  https://doi.org/10.1364/OL.24.000291ADSCrossRefGoogle Scholar
  7. 7.
    Cuche, E., Ruffieux, P., Poscio, P., Depeursinge, C.: Phase contrast microscopy with digital holography. Advances in Optical Imaging and Photon Migration. Optical Society of America (1998), ATuA3Google Scholar
  8. 8.
    Sebesta, M., Gustafsson, M.: Object characterization with refractometric digital Fourier holography. Opt. Lett. 30(5), 471–473 (2005).  https://doi.org/10.1364/OL.30.000471ADSCrossRefGoogle Scholar
  9. 9.
    Ikeda, T., Popescu, G., Dasari, R.R., Feld, M.S.: Hilbert phase microscopy for investigating fast dynamics in transparent systems. Opt. Lett. 30(10), 1165–1167 (2005).  https://doi.org/10.1364/OL.30.001165ADSCrossRefGoogle Scholar
  10. 10.
    Smigielski, P., Faupel, M., Grzymala, R.: Imagerie et photonique: Pour les Sciences du Vivant et la Médecine. FontisMedia (2004). http://books.google.de/books?id=iH1kPQAACAAJ. ISBN 9782884760058
  11. 11.
    Marquet, P., Rappaz, B., Magistretti, P.J., Cuche, E., Emery, Y., Colomb, T., Depeursinge, C.: Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 30(5), 468–470 (2005).  https://doi.org/10.1364/OL.30.000468ADSCrossRefGoogle Scholar
  12. 12.
    Dubois, F., Debeir, O., Kiss, R., Decaestecker, C., Van Ham, P., Yourassowsky, C., Monnom, O., Legros, J.-C.: Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration. J. Biomed. Opt. 11(5), 054032–054032-5 (2006).  https://doi.org/10.1117/1.2357174, ISBN 1083–3668ADSCrossRefGoogle Scholar
  13. 13.
    Lue, N., Popescu, G., Ikeda, T., Dasari, R.R., Badizadegan, K., Feld, M.S.: Live cell refractometry using microfluidic devices. Opt. Lett. 31(18), 2759–2761 (2006).  https://doi.org/10.1364/OL.31.002759ADSCrossRefGoogle Scholar
  14. 14.
    Marquet, P., Rappaz, B., Charrièrec, F., Emery, Y., Depeursinge, C., Magistretti, P.: Analysis of cellular structure and dynamics with digital holographic microscopy. Biophotonics 2007: Optics in Life Science, vol. 6633. Optical Society of America (2007)Google Scholar
  15. 15.
    Ferraro, P., Nicola, S.D., Coppola, G., Finizio, A., Alfieri, D., Pierattini, G.: Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms. Opt. Lett. 29(8), 854–856 (2004).  https://doi.org/10.1364/OL.29.000854ADSCrossRefGoogle Scholar
  16. 16.
    Ferraro, P., Nicola, S.D., Finizio, A., Coppola, G., Grilli, S., Magro, C., Pierattini, G.: Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging. Appl. Opt. 42(11), 1938–1946 (2003).  https://doi.org/10.1364/AO.42.001938ADSCrossRefGoogle Scholar
  17. 17.
    Colomb, T., Cuche, E., Charrière, F., Kühn, J., Aspert, N., Montfort, F., Marquet, P., Depeursinge, C.: Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation. Appl. Opt. 45(5), 851–863 (2006).  https://doi.org/10.1364/AO.45.000851ADSCrossRefGoogle Scholar
  18. 18.
    Javidi, B., Tajahuerce, E.: Three-dimensional object recognition by use of digital holography. Opt. Lett. 25(9), 610–612 (2000).  https://doi.org/10.1364/OL.25.000610ADSCrossRefGoogle Scholar
  19. 19.
    Kim, D., Javidi, B.: Distortion-tolerant 3-D object recognition by using single exposure on-axis digital holography. Opt. Express 12(22), 5539–5548 (2004).  https://doi.org/10.1364/OPEX.12.005539ADSCrossRefGoogle Scholar
  20. 20.
    Dubois, F., Monnom, O., Yourassowsky, C., Legros, J.-C.: Border processing in digital holography by extension of the digital hologram and reduction of the higher spatial frequencies. Appl. Opt. 41(14), 2621–2626 (2002).  https://doi.org/10.1364/AO.41.002621ADSCrossRefGoogle Scholar
  21. 21.
    Klysubun, P., Indebetouw, G.: A posteriori processing of spatiotemporal digital microholograms. J. Opt. Soc. Am. A 18(2), 326–331 (2001).  https://doi.org/10.1364/JOSAA.18.000326ADSCrossRefGoogle Scholar
  22. 22.
    Yu, L., Cai, L.: Iterative algorithm with a constraint condition for numerical reconstruction of a three-dimensional object from its hologram. J. Opt. Soc. Am. A 18(5), 1033–1045 (2001).  https://doi.org/10.1364/JOSAA.18.001033ADSCrossRefGoogle Scholar
  23. 23.
    Li, W., Loomis, N.C., Hu, Q., Davis, C.S.: Focus detection from digital in-line holograms based on spectral l1 norms. J. Opt. Soc. Am. A 24(10), 3054–3062 (2007).  https://doi.org/10.1364/JOSAA.24.003054ADSCrossRefGoogle Scholar
  24. 24.
    McElhinney, CP., McDonald, JB., Castro, A., Frauel, Y., Javidi, B., Naughton, TJ.: Depth-independent segmentation of macroscopic three-dimensional objects encoded in single perspectives of digital holograms. Opt. Lett. 32(10), 1229–1231 (2007).  https://doi.org/10.1364/OL.32.001229ADSCrossRefGoogle Scholar
  25. 25.
    Paturzo, M., Ferraro, P.: Creating an extended focus image of a tilted object in Fourier digital holography. Opt. Express 17(22), 20546–20552 (2009).  https://doi.org/10.1364/OE.17.020546ADSCrossRefGoogle Scholar
  26. 26.
    Kim, T., Poon, T.-C., Indebetouw, G.: Depth detection and image recovery in remote sensing by optical scanning holography. Opt. Eng. 41(6), 1331–1338 (2002).  https://doi.org/10.1117/1.1476939, ISBN 0091–3286ADSCrossRefGoogle Scholar
  27. 27.
    Dubois, F., Schockaert, C., Callens, N., Yourassowsky, C.: Focus plane detection criteria in digital holography microscopy by amplitude analysis. Opt. Express 14(13), 5895–5908 (2006).  https://doi.org/10.1364/OE.14.005895ADSCrossRefGoogle Scholar
  28. 28.
    Sung, Y., Choi, W., Fang-Yen, C., Badizadegan, K., Dasari, R.R., Feld, M.S.: Optical diffraction tomography for high resolution live cell imaging. Opt. Express 17(1), 266–277 (2009).  https://doi.org/10.1364/OE.17.000266ADSCrossRefGoogle Scholar
  29. 29.
    Hong, S.-H., Jang, J.-S., Javidi, B.: Three-dimensional volumetric object reconstruction using computational integral imaging. Opt. Express 12(3), 483–491 (2004).  https://doi.org/10.1364/OPEX.12.000483ADSCrossRefGoogle Scholar
  30. 30.
    Mann, C., Yu, L., Lo, C.-M., Kim, M.: High-resolution quantitative phase-contrast microscopy by digital holography. Opt. Express 13(22), 8693–8698 (2005).  https://doi.org/10.1364/OPEX.13.008693ADSCrossRefGoogle Scholar
  31. 31.
    Martínez-León, L., Pedrini, G., Osten, W.: Applications of short-coherence digital holography in microscopy. Appl. Opt. 44(19), 3977–3984 (2005).  https://doi.org/10.1364/AO.44.003977ADSCrossRefGoogle Scholar
  32. 32.
    Charrière, F., Kühn, J., Colomb, T., Montfort, F., Cuche, E., Emery, Y., Weible, K., Marquet, P., Depeursinge, C.: Characterization of microlenses by digital holographic microscopy. Appl. Opt. 45(5), 829–835 (2006).  https://doi.org/10.1364/AO.45.000829ADSCrossRefGoogle Scholar
  33. 33.
    Sun, Y., Duthaler, S., Nelson, B.J.: Autofocusing in computer microscopy: selecting the optimal focus algorithm. Microsc. Res. Tech. 65(3), 139–149 (2004).  https://doi.org/10.1002/jemt.20118, ISSN 1097–0029CrossRefGoogle Scholar
  34. 34.
    Wolf, F., Geley, S.: A simple and stable autofocusing protocol for long multidimensional live cell microscopy. J. Microsc. 221(1), 72–77 (2006).  https://doi.org/10.1111/j.1365-2818.2006.01538.x, ISSN 1365–2818MathSciNetCrossRefGoogle Scholar
  35. 35.
    Liebling, M., Unser, M.: Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion. J. Opt. Soc. Am. A 21(12), 2424–2430 (2004)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Remmersmann, C., Stürwald, S., Kemper, B., Langehanenberg, P., von Bally, G.: Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging. Appl. Opt. 48(8), 1463–1472 (2009).  https://doi.org/10.1364/AO.48.001463ADSCrossRefGoogle Scholar
  37. 37.
    Stürwald, S., Kemper, B., Remmersmann, C., Langehanenberg, P., von Bally, G : Application of light emitting diodes in digital holographic microscopy. Version 2008.  https://doi.org/10.1117/12.781186
  38. 38.
    Forbes, G.W.: Shape specification for axially symmetric optical surfaces. Opt. Express 15(8), 5218–5226 (2007).  https://doi.org/10.1364/OE.15.005218ADSCrossRefGoogle Scholar
  39. 39.
    Kehtarnavaz, N., Oh, H.-J.: Development and real-time implementation of a rule-based auto-focus algorithm. Real-Time Imaging 9(3), 197–203 (2003).  https://doi.org/10.1016/S1077-2014(03)00037-8, ISSN 10772014CrossRefGoogle Scholar
  40. 40.
    Geusebroek, J.-M., Cornelissen, F., Smeulders, A.W., Geerts, H.: Robust autofocusing in microscopy. Cytometry 39(1), 1–9 (2000). http://dx.doi.org/10.1002/(SICI)1097–0320(20000101)39:11::AID–CYTO23.0.CO;2–J, ISSN 1097–0320CrossRefGoogle Scholar
  41. 41.
    Gabarda, S., Cristóbal, G.: No-reference image quality assessment through the von Mises distribution. J. Opt. Soc. Am. A 29(10), 2058–2066 (2012).  https://doi.org/10.1364/JOSAA.29.002058ADSCrossRefGoogle Scholar
  42. 42.
    Yibin, T., Zhihai, X., Huajun, F., Ruichun, D.: Autofocus based on skin detection 32(1), 66–60 (2013)Google Scholar
  43. 43.
    Chern, N.N.K., Neow, P.A., Ang, V.M.H.: Practical issues in pixel-based autofocusing for machine vision. In: IEEE International Conference on Robotics and Automation. Proceedings 2001 ICRA, vol. 3, 2791–2796 (2001). ISSN 1050–4729Google Scholar
  44. 44.
    Firestone, L., Cook, K., Culp, K., Talsania, N., Preston, K.: Comparison of autofocus methods for automated microscopy. Cytometry 12(3), 195–206 (1991).  https://doi.org/10.1002/cyto.990120302, ISSN 1097–0320CrossRefGoogle Scholar
  45. 45.
    Bravo-Zanoguera, M., Massenbach, Bv., Kellner, A.L., Price, J.H.: High-performance autofocus circuit for biological microscopy. Rev. Sci. Instrum. 69(11), 3966–3977 (1998).  https://doi.org/10.1063/1.1149207ADSCrossRefGoogle Scholar
  46. 46.
    Agero, U., Mesquita, L.G., Neves, B.R.A., Gazzinelli, R.T., Mesquita, O.N.: Defocusing microscopy. Microsc. Res. Tech. 65(3), 159–165 (2004).  https://doi.org/10.1002/jemt.20117, ISSN 1097–0029CrossRefGoogle Scholar
  47. 47.
    Langehanenberg, P., Kemper, B., Dirksen, D., von Bally, G.: Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging. Appl. Opt. 47(19), D176–D182 (2008).  https://doi.org/10.1364/AO.47.00D176CrossRefGoogle Scholar
  48. 48.
    Langehanenberg, P., Kemper, B., von Bally, G.: Autofocus algorithms for digital holographic microscopy. Biophotonics 2007: Optics in Life Science, pp. 613–633. Optical Society of America (2007)Google Scholar
  49. 49.
    Schofield, M.A., Zhu, Y.: Fast phase unwrapping algorithm for interferometric applications. Opt. Lett. 28(14), 1194–1196 (2003).  https://doi.org/10.1364/OL.28.001194ADSCrossRefGoogle Scholar
  50. 50.
    Valdecasas, A.G., Marshall, D., Becerra, J.M., Terrero, J.J.: On the extended depth of focus algorithms for bright field microscopy. Micron 32(6), 559–569 (2001).  https://doi.org/10.1016/S0968-4328(00)00061-5, ISSN 0968–4328CrossRefGoogle Scholar
  51. 51.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. The Art of Scientific Computing, 2nd edn. Cambridge University Press, New York (1992). ISBN 0–521–43108–5Google Scholar
  52. 52.
    He, J., Zhou, R., Hong, Z.: Modified fast climbing search auto-focus algorithm with adaptive step size searching technique for digital camera. IEEE Trans. Consum. Electron. 49(2), 257–262 (2003)Google Scholar
  53. 53.
    Faure, H., Lemieux, C.: Generalized Halton sequences in 2008: a comparative study. ACM Trans. Model. Comput. Simul. 19(4), 15:1–15:31 (2009).  https://doi.org/10.1145/1596519.1596520, ISSN 1049–3301zbMATHCrossRefGoogle Scholar
  54. 54.
    Halton, J.H.: Algorithm 247: radical-inverse quasi-random point sequence. Commun. ACM 7(12), 701–702 (1964).  https://doi.org/10.1145/355588.365104, ISSN 00010782CrossRefGoogle Scholar
  55. 55.
    Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods: Regional Research Conference Selected Papers. Society for Industrial and Applied Mathematics, Philadelphia (1992). ISBN 9780898712957Google Scholar
  56. 56.
    Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Dover Books on Mathematics. Dover Publications, Mineola (2006). ISBN 9780486450193Google Scholar
  57. 57.
    Colomb, T., Montfort, F., Kühn, J., Aspert, N., Cuche, E., Marian, A., Charrière, F., Bourquin, S., Marquet, P., Depeursinge, C.: Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy. J. Opt. Soc. Am. A 23(12), 3177–3190 (2006).  https://doi.org/10.1364/JOSAA.23.003177ADSCrossRefGoogle Scholar
  58. 58.
    Dubois, F., Joannes, L., Legros, J.-C.: Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence. Appl. Opt. 38(34), 7085–7094 (1999).  https://doi.org/10.1364/AO.38.007085
  59. 59.
    Dubois, F., Requena, M.-L.N., Minetti, C., Monnom, O., Istasse, E.: Partial spatial coherence effects in digital holographic microscopy with a laser source. Appl. Opt. 43(5), 1131–1139 (2004).  https://doi.org/10.1364/AO.43.001131ADSCrossRefGoogle Scholar
  60. 60.
    Mehta, D.S., Saxena, K., Dubey, S.K., Shakher, C.: Coherence characteristics of light-emitting diodes. J. Lumin. 130(1), 96–102 (2010).  https://doi.org/10.1016/j.jlumin.2009.07.027, ISSN 0022–2313ADSCrossRefGoogle Scholar
  61. 61.
    Kemper, B., Kosmeier, S., Langehanenberg, P., Przibilla, S., Remmersmann, C., Stürwald, S., von Bally, G.: Application of 3D tracking, LED illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy. Version 2009.  https://doi.org/10.1117/12.808392
  62. 62.
    Takeda, M., Ina, H., Kobayashi, S.: Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72(1), 156–160 (1982).  https://doi.org/10.1364/JOSA.72.000156ADSCrossRefGoogle Scholar
  63. 63.
    Kreis, T.: J. Opt. Soc. Am. A 6, 847–855Google Scholar
  64. 64.
    Chavel, P., Lowenthal, S.: Noise and coherence in optical image processing. II. Noise fluctuations. J. Opt. Soc. Am. 68(6), 721 (1978).  https://doi.org/10.1364/JOSA.68.000721ADSCrossRefGoogle Scholar
  65. 65.
    Dubois, F., Yourassowski, C.: Method and device for obtaining a sample with three dimensional microscopy (2006)Google Scholar
  66. 66.
    Liebling, M., Unser, M.: Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion. J. Opt. Soc. Am. A 21(12), 2424–2430 (2004).  https://doi.org/10.1364/JOSAA.21.002424ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    Kemper, B., Stuerwald, S., Remmersmann, C., Langehanenberg, P., von Bally, G.: Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces. Opt. Lasers Eng. 46(7), 499–507 (2008).  https://doi.org/10.1016/j.optlaseng.2008.03.007, ISSN 0143–8166ADSCrossRefGoogle Scholar
  68. 68.
    Kreis, T.: Holographic Interferometry: Principles and Methods. Akademie Verlag Series in Optical Metrology. Akademie Verlag, Berlin (1996). http://books.google.de/books?id=qfJRAAAAMAAJ. ISBN 9783055016448
  69. 69.
    Javidi, B., Do, C.M., Hong, S.-H., Nomura, T.: Multi-spectral holographic three-dimensional image fusion using discrete wavelet transform. J. Disp. Technol. 2(4), 411–417 (2006).  https://doi.org/10.1109/JDT.2006.885156, ISSN 1551–319XADSCrossRefGoogle Scholar
  70. 70.
    Kuhn, K.J.: Laser Engineering. Prentice Hall Books, Upper Saddle River (1998). http://books.google.de/books?id=C-WVQgAACAAJ. ISBN 9780023669217
  71. 71.
    Siegman, A.E.: Lasers. University Science Books (1986). http://books.google.de/books?id=1BZVwUZLTkAC. ISBN 9780935702118
  72. 72.
    Bouma, B.: Handbook of Optical Coherence Tomography. Taylor & Francis, Boca Raton (2001). http://books.google.de/books?id=3r3zgdeO8XgC. ISBN 9780824705589
  73. 73.
    Dai, G., Koenders, L., Pohlenz, F., Dziomba, T., Danzebrink, H.-U.: Accurate and traceable calibration of one-dimensional gratings. Meas. Sci. Technol. 16(6), 1241–1249 (2005).  https://doi.org/10.1088/0957-0233/16/6/001, ISSN 0957–0233ADSCrossRefGoogle Scholar
  74. 74.
    Weckenmann, A., Gawande, B.: Koordinatenmesstechnik: Flexible Messstrategien für Mass, Form und Lage. Carl Hanser (1999). http://books.google.de/books?id=Fnn2AQAACAAJ. ISBN 9783446179912
  75. 75.
    Wiedenhöfer, T., Weckenmann, A.: Modelling measurement processes in nanometrology - aspects on specific sources of uncertainty. In: Proceedings of the 6th EUSPEN International Conference, Vol. I, 402–405 (2006)Google Scholar
  76. 76.
    Marinello, F., Bariani, P., Carmignato, S., Savio, E.: Geometrical modelling of scanning probe microscopes and characterization of errors. Meas. Sci. Technol. 20(8), 084013 (2009). http://stacks.iop.org/0957-0233/20/i=8/a=084013ADSCrossRefGoogle Scholar
  77. 77.
    Marinello, F., Savio, E., Bariani, P., Carmignato, S.: Coordinate metrology using scanning probe microscopes. Meas. Sci. Technol. 20(8), 084002 (2009). http://stacks.iop.org/0957-0233/20/i=8/a=084002ADSCrossRefGoogle Scholar
  78. 78.
    Zhang, H., Huang, F., Higuchi, T.: Dual unit scanning tunneling microscope-atomic force microscope for length measurement based on reference scales. J. Vac. Sci. Technol. B 15(4), 780–784 (1997).  https://doi.org/10.1116/1.589408ADSCrossRefGoogle Scholar
  79. 79.
    Jo/rgensen, J.F., Madsen, L.L., Garnaes, J., Carneiro, K., Schaumburg, K.: Calibration, drift elimination, and molecular structure analysis. J. Vac. Sci. Technol. B 12(3), 1698–1701 (1994).  https://doi.org/10.1116/1.587266ADSCrossRefGoogle Scholar
  80. 80.
  81. 81.
    Seward, G.: Tutorial texts in optical engineering. Optical Design of Microscopes, vol. TT88. SPIE Press, Bellingham and Wash (2010). ISBN 0819480959CrossRefGoogle Scholar
  82. 82.
    Dufresne, E.R., Spalding, G.C., Dearing, M.T., Sheets, S.A., Grier, D.G.: Computer generated holographic optical tweezer arrays. Rev. Sci. Instrum. 72(3), 1810 (2001).  https://doi.org/10.1063/1.1344176ADSCrossRefGoogle Scholar
  83. 83.
    Hayasaki, Y., Itoh, M., Yatagai, T., Nishida, N.: Nonmechanical optical manipulation of microparticle using spatial light modulator. Opt. Rev. 6(1), 24–27 (1999).  https://doi.org/10.1007/s10043-999-0024-5, ISSN 1340–6000ADSCrossRefGoogle Scholar
  84. 84.
    Hossack, W., Theofanidou, E., Crain, J., Heggarty, K., Birch, M.: High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay. Opt. Express 11(17), 2053 (2003).  https://doi.org/10.1364/OE.11.002053ADSCrossRefGoogle Scholar
  85. 85.
    Martín-Badosa, E., Montes-Usategui, M., Carnicer, A., Andilla, J., Pleguezuelos, E., Juvells, I.: Design strategies for optimizing holographic optical tweezers set-ups. J. Opt. A: Pure Appl. Opt. 9(8), S267–S277 (2007).  https://doi.org/10.1088/1464-4258/9/8/S22, ISSN 1464–4258ADSCrossRefGoogle Scholar
  86. 86.
    Gerchberg, R.W., Saxton, W.O.: A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237 (1971)Google Scholar
  87. 87.
    Di Leonardo, R., Ianni, F., Ruocco, G.: Computer generation of optimal holograms for optical trap arrays. Opt. Express 15(4), 1913–1922 (2007).  https://doi.org/10.1364/OE.15.001913ADSCrossRefGoogle Scholar
  88. 88.
    Fukuchi, N., Biqing, YE, Igasaki, Y., Yoshida, N., Kobayashi, Y., Hara, T.: Oblique-incidence characteristics of a parallel-aligned nematic-liquid-crystal spatial light modulator. Opt. Rev. 12(5), 372 (2005).  https://doi.org/10.1007/s10043-005-0372-8ADSCrossRefGoogle Scholar
  89. 89.
  90. 90.
    Zwick, S.: Flexible Mikromanipulation durch räumliche Lichtmodulation in der Mikroskopie. Dissertation, Universität Stuttgart, Stuttgart, 19.05.2010Google Scholar
  91. 91.
    Demtröder, W.: Laser spectroscopy: basic concepts and instrumentation; with 91 problems and hints for solution, vol. 3. Springer, Berlin (2002). ISBN 3540652256Google Scholar
  92. 92.
    Thorlabs: Optical Tweezer Kit (2012). http://www.thorlabs.de/catalogpages/V21/1825.PDF
  93. 93.
    Martín-Badosa, E., Montes-Usategui, M., Carnicer, A., Andilla, J., Pleguezuelos, E., Juvells, I.: Design strategies for optimizing holographic optical tweezers set-ups. J. Opt. A: Pure Appl. Opt. 9(8), S267–S277 (2007). ISSN 1464–4258ADSCrossRefGoogle Scholar
  94. 94.
    Bowman, R., D’Ambrosio, V., Rubino, E., Jedrkiewicz, O., Di Trapani, P., Padgett, M.J.: Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression. Eur. Phys. J. Special Top. 199(1), 149–158 (2011).  https://doi.org/10.1140/epjst/e2011-01510-4, ISSN 1951–6355ADSCrossRefGoogle Scholar
  95. 95.
    Grier, D.G.: A revolution in optical manipulation. Nature 424(6950), 810–816 (2003).  https://doi.org/10.1038/nature01935ADSCrossRefGoogle Scholar
  96. 96.
    Ccaron, T., Mazilu, M., Dholakia, K.: In situ wavefront correction and its application to micromanipulation. Nat. Photonics 4(6), 388–394 (2010).  https://doi.org/10.1038/nphoton.2010.85ADSCrossRefGoogle Scholar
  97. 97.
    Dholakia, K., Cizmar, T.: Shaping the future of manipulation. Nat. Photonics 5(6), 335–342 (2011).  https://doi.org/10.1038/nphoton.2011.80ADSCrossRefGoogle Scholar
  98. 98.
    Dufresne, E.R., Grier, D.G.: Optical tweezer arrays and optical substrates created with diffractive optics. Rev. Sci. Instrum. 69(5), 1974–1977 (1998).  https://doi.org/10.1063/1.1148883ADSCrossRefGoogle Scholar
  99. 99.
    Curtis, J.E., Koss, B.A., Grier, D.G.: Dynamic holographic optical tweezers. Opt. Commun. 207(1–6), 169–175 (2002).  https://doi.org/10.1016/S0030-4018(02)01524-9, ISSN 0030–4018ADSCrossRefGoogle Scholar
  100. 100.
    Yeh, P., Gu, C.: Optics of Liquid Crystal Displays. Wiley Series in Pure and Applied Optics. Wiley, New York (2010). http://books.google.de/books?id=0XhtwBpMtA8C. ISBN 9780470181768
  101. 101.
    Reicherter, M., Wagemann, E.U., Haist, T., Tiziani, H.J.: Optical particle trapping with computer-generated holograms written on a liquid-crystal display. Opt. Lett. 24(9), 608–610 (1999).  https://doi.org/10.1364/OL.24.000608ADSCrossRefGoogle Scholar
  102. 102.
    van der Horst, A., Forde, N.R.: Calibration of dynamic holographic optical tweezers for force measurements on biomaterials. Opt. Express 16(25), 20987–21003 (2008).  https://doi.org/10.1364/OE.16.020987ADSCrossRefGoogle Scholar
  103. 103.
    Moffitt, J.R., Chemla, Y.R., Smith, S.B., Bustamante, C.: Recent advances in optical tweezers. Annu. Rev. Biochem. 77(1), 205–228 (2008).  https://doi.org/10.1146/annurev.biochem.77.043007.090225. PMID: 18307407CrossRefGoogle Scholar
  104. 104.
    van der Horst, A., Downing, B.P.B., Forde, N.R.: Position and intensity modulations in holographic optical traps created by a liquid crystal spatial light modulator. Advances in Imaging. Optical Society of America (2009), OMB3Google Scholar
  105. 105.
    McLane, L.T., Carroll, K.M., Scrimgeour, J., Bedoya, M.D., Kramer, A., Curtis, J.E.: Force measurements with a translating holographic optical trap. Version 2010.  https://doi.org/10.1117/12.863549
  106. 106.
    Padgett, M.: The effect of external forces on discrete motion within holographic optical tweezers. Opt. Express 15(26), 18268–18274 (2007). http://eprints.gla.ac.uk/29118/ADSCrossRefGoogle Scholar
  107. 107.
    Persson, M., Engström, D., Frank, A., Backsten, J., Bengtsson, J., Goksör, M.: Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change. Opt. Express 18(11), 11250–11263 (2010).  https://doi.org/10.1364/OE.18.011250ADSCrossRefGoogle Scholar
  108. 108.
    McKnight, D.J.: Continuous view of dc-balanced images on a ferroelectric liquid-crystal spatial light modulator. Opt. Lett. 19(18), 1471–1473 (1994).  https://doi.org/10.1364/OL.19.001471ADSCrossRefGoogle Scholar
  109. 109.
    Moore, J.R., Collings, N., Crossland, W.A., Davey, A.B., Evans, M., Jeziorska, A.M., Komarcevic, M., Parker, R.J., Wilkinson, T.D., Xu, H.: The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM. IEEE Photonics Technol. Lett. 20(1), 60–62 (2008).  https://doi.org/10.1109/LPT.2007.912690, ISSN 1041–1135ADSCrossRefGoogle Scholar
  110. 110.
    Hermerschmidt, A., Osten, S., Krüger, S., Blümel, T.: Wave front generation using a phase-only modulating liquid-crystal-based micro-display with HDTV resolution. Version 2007.  https://doi.org/10.1117/12.722891
  111. 111.
    Moreno, I., Lizana, A., Márquez, A., Iemmi, C., Fernández, E., Campos, J., Yzuel, M.J.: Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics. Opt. Express 16(21), 16711–16722 (2008).  https://doi.org/10.1364/OE.16.016711ADSCrossRefGoogle Scholar
  112. 112.
    Li, F., Mukohzaka, N., Yoshida, N., Igasaki, Y., Toyoda, H., Inoue, T., Kobayashi, Y., Hara, T.: Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display. Opt. Rev. 5(3), 174–178 (1998).  https://doi.org/10.1007/s10043-998-0174-x, ISSN 1340–6000ADSCrossRefGoogle Scholar
  113. 113.
    Berg-Soerensen, K., Oddershede, L., Florin, E.-L., Flyvbjerg, H.: Unintended filtering in a typical photodiode detection system for optical tweezers. J. Appl. Phys. 93(6), 3167–3176 (2003).  https://doi.org/10.1063/1.1554755ADSCrossRefGoogle Scholar
  114. 114.
    Tolić-Nørrelykke, S.F., Schäffer, E., Howard, J., Pavone, F.S., Jülicher, F., Flyvbjerg, H.: Calibration of optical tweezers with positional detection in the back focal plane. Rev. Sci. Instrum. 77(10), 103101 (2006).  https://doi.org/10.1063/1.2356852ADSCrossRefGoogle Scholar
  115. 115.
    Widdershoven, I., Donker, R.L., Spaan, H.A.M.: Realization and calibration of the “Isara 400” ultra-precision CMM. J. Phys.: Conf. Ser. 311(1), 012002 (2011). http://stacks.iop.org/1742-6596/311/i=1/a=012002Google Scholar
  116. 116.
    Manske, E., Hausotte, T., Mastylo, R., Machleidt, T., Franke, K.-H., Jäger, G.: New applications of the nanopositioning and nanomeasuring machine by using advanced tactile and non-tactile probes. Meas. Sci. Technol. 18(2), 520 (2007). http://stacks.iop.org/0957-0233/18/i=2/a=S27ADSCrossRefGoogle Scholar
  117. 117.
    Weckenmann, A., Peggs, G., Hoffmann, J.: Probing systems for dimensional micro- and nano-metrology. Meas. Sci. Technol. 17(3), 504 (2006). http://stacks.iop.org/0957-0233/17/i=3/a=S08ADSCrossRefGoogle Scholar
  118. 118.
    Wong, D.W.K., Chen, G.: Redistribution of the zero order by the use of a phase checkerboard pattern in computer generated holograms. Appl. Opt. 47(4), 602–610 (2008).  https://doi.org/10.1364/AO.47.000602ADSCrossRefGoogle Scholar
  119. 119.
    Dudley, A., Vasilyeu, R., Belyi, V., Khilo, N., Ropot, P., Forbes, A.: Controlling the evolution of nondiffracting speckle by complex amplitude modulation on a phase-only spatial light modulator. Opt. Commun. 285(1), 5–12 (2012).  https://doi.org/10.1016/j.optcom.2011.09.004, ISSN 0030–4018ADSCrossRefGoogle Scholar
  120. 120.
    Cojocaru, E.: Mathieu functions computational toolbox implemented in Matlab 2008. arXiv:0811.1970. – Forschungsbericht. – Comments: 20pages,0figures,6tables
  121. 121.
    MacDonald, M.P.: Creation and manipulation of three-dimensional optically trapped structures. Science 296(5570), 1101–1103 (2002).  https://doi.org/10.1126/science.1069571, ISSN 00368075ADSCrossRefGoogle Scholar
  122. 122.
    Dudley, A., Forbes, A.: From stationary annular rings to rotating Bessel beams. J. Opt. Soc. Am. A 29(4), 567–573 (2012).  https://doi.org/10.1364/JOSAA.29.000567ADSCrossRefGoogle Scholar
  123. 123.
    DaneshPanah, M., Javidi, B.: Tracking biological microorganisms in sequence of 3D holographic microscopy images. Opt. Express 15(17), 10761–10766 (2007).  https://doi.org/10.1364/OE.15.010761ADSCrossRefGoogle Scholar
  124. 124.
    Moon, I., Daneshpanah, M., Javidi, B., Stern, A.: Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy. Proc. IEEE 97(6), 990–1010 (2009).  https://doi.org/10.1109/JPROC.2009.2017563, ISSN 0018–9219CrossRefGoogle Scholar
  125. 125.
    Schaal, F., Warber, M., Zwick, S., van der Kuip, H., Haist, T., Osten, W.: Marker-free cell discrimination by holographic optical tweezers. J. Eur. Opt. Soc. Rapid Publ. 4(0), (2009). https://www.jeos.org/index.php/jeos_rp/article/view/09028. ISSN 1990–2573
  126. 126.
    Gabor, D.: A new microscopic principle. Nature 161, 777–778 (1948)ADSCrossRefGoogle Scholar
  127. 127.
    Martinez-Corral, M., Saavedra, G.: The resolution challenge in 3D optical microscopy. Opt. Nanoscopy 1(1), 68 (2009).  https://doi.org/10.1186/2192-2853-1-2, ISSN 0079–6638CrossRefGoogle Scholar
  128. 128.
    Deutsch, S.: Holographic imaging (Benton, S.A., Bove, V.M.: 2008) [Book review]. IEEE Eng. Med. Biol. Mag. 29(3), 82–84 (2010).  https://doi.org/10.1109/MEMB.2010.936543, ISSN 0739–5175CrossRefGoogle Scholar
  129. 129.
    Goodman, J.W.: Introduction to Fourier Optics. McGraw-Hill Physical and Quantum Electronics Series. Roberts & Company (2005). http://books.google.de/books?id=ow5xs_Rtt9AC. ISBN 9780974707723
  130. 130.
    Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11(5), 288–290 (1986).  https://doi.org/10.1364/OL.11.000288ADSCrossRefGoogle Scholar
  131. 131.
    Svoboda, K., Block, S.M.: Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).  https://doi.org/10.1146/annurev.bb.23.060194.001335. PMID: 7919782CrossRefGoogle Scholar
  132. 132.
    Drexler, W., Fujimoto, J.G.: Optical Coherence Tomography: Technology and Applications. Springer Science & Business Media, New York (2008)CrossRefGoogle Scholar
  133. 133.
    Fällman, E., Axner, O.: Design for fully steerable dual-trap optical tweezers. Appl. Opt. 36(10), 2107–2113 (1997).  https://doi.org/10.1364/AO.36.002107ADSCrossRefGoogle Scholar
  134. 134.
    Simmons, R.M., Finer, J.T., Chu, S., Spudich, J.A.: Quantitative measurements of force and displacement using an optical trap. Biophys. J. 70(4), 1813–1822 (1996).  https://doi.org/10.1016/S0006-3495(96)79746-1, ISSN 0006–3495ADSCrossRefGoogle Scholar
  135. 135.
    Javidi, B., Moon, I., Yeom, S., Carapezza, E.: Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography. Opt. Express 13(12), 4492–4506 (2005).  https://doi.org/10.1364/OPEX.13.004492ADSCrossRefGoogle Scholar
  136. 136.
    Javidi, B., Yeom, S., Moon, I., Daneshpanah, M.: Real-time automated 3D sensing, detection, and recognition of dynamic biological micro-organic events. Opt. Express 14(9), 3806–3829 (2006).  https://doi.org/10.1364/OE.14.003806ADSCrossRefGoogle Scholar
  137. 137.
    Rappaz, B., Charrière, F., Depeursinge, C., Magistretti, P.J., Marquet, P.: Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium. Opt. Lett. 33(7), 744–746 (2008)ADSCrossRefGoogle Scholar
  138. 138.
    Guck, J., Ananthakrishnan, R., Mahmood, H., Moon, T.J., Cunningham, C.C., Kaes, J.: The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81(2), 767–784 (2001).  https://doi.org/10.1016/S0006-3495(01)75740-2, ISSN 0006–3495ADSCrossRefGoogle Scholar
  139. 139.
    MacDonald, M.P., Dholakia, K., Spalding, G.C.: Microfluidic sorting in an optical lattice. Nature 6965, 421–424 (2003).  https://doi.org/10.1038/nature02144ADSCrossRefGoogle Scholar
  140. 140.
    Buchholz, M., et al.: A multistep high-content screening approach to identify novel functionally relevant target genes in pancreatic cancer. PloS one 10(e0122946) (2015)CrossRefGoogle Scholar
  141. 141.
    Kemper, B., Kosmeier, S., Langehanenberg, P., von Bally, G., Bredebusch, I., Domschke, W., Schnekenburger, J.: Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy. J. Biomed. Opt. 12(5), 054009–054009-5 (2007).  https://doi.org/10.1117/1.2798639, ISBN 1083–3668ADSCrossRefGoogle Scholar
  142. 142.
    Moon, I., Javidi, B.: Three-dimensional identification of stem cells by computational holographic imaging. J. R. Soc. Interface 4(13), 305–313 (2007).  https://doi.org/10.1098/rsif.2006.0175CrossRefGoogle Scholar
  143. 143.
    Stuerwald, S., Schmitt, R.: Readjusting image sharpness by numerical parametric lenses in Forbes-representation and Halton sampling for selective refocusing in digital holographic microscopy - Errata. Version 2010.  https://doi.org/10.1117/12.903693
  144. 144.
    Woerdemann, M., Alpmann, C., Denz, C.: Optical assembly of microparticles into highly ordered structures using Ince–Gaussian beams. Appl. Phys. Lett. 98(11), 111101 (2011).  https://doi.org/10.1063/1.3561770, ISSN 00036951ADSCrossRefGoogle Scholar
  145. 145.
    Rodrigo, P.J., Kelemen, L., Palima, D., Alonzo, C.A., Ormos, P., Glückstad, J.: Optical microassembly platform for constructing reconfigurable microenvironments for biomedical studies. Opt. Express 17(8), 6578–6583 (2009).  https://doi.org/10.1364/OE.17.006578ADSCrossRefGoogle Scholar
  146. 146.
    Matsumoto, N., Ando, T., Inoue, T., Ohtake, Y., Fukuchi, N., Hara, T.: Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators. J. Opt. Soc. Am. A 25(7), 1642–1651 (2008).  https://doi.org/10.1364/JOSAA.25.001642
  147. 147.
    Debailleul, M., Simon, B., Georges, V., Haeberlé, O., Lauer, V.: Holographic microscopy and diffractive microtomography of transparent samples. Meas. Sci. Technol. 19(7), 074009 (2008). http://stacks.iop.org/0957-0233/19/i=7/a=074009ADSCrossRefGoogle Scholar
  148. 148.
    Choi, W.: Tomographic phase microscopy and its biological applications. 3D Res. 3(4), 1–11 (2012).  https://doi.org/10.1007/3DRes.04(2012)5
  149. 149.
    Thiel, M., Fischer, J., von Freymann, G., Wegener, M.: Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm. Appl. Phys. Lett. 97(22), 221102–221102-3 (2010).  https://doi.org/10.1063/1.3521464, ISSN 0003–6951ADSCrossRefGoogle Scholar
  150. 150.
    Gittard, S.D., Nguyen, A., Obata, K., Koroleva, A., Narayan, R.J., Chichkov, B.N.: Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator. Biomed. Opt. Express 2(11), 3167–3178 (2011).  https://doi.org/10.1364/BOE.2.003167CrossRefGoogle Scholar
  151. 151.
    Soukoulis, C.M., Wegener, M.: Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photon 5(9), 523–530 (2011).  https://doi.org/10.1038/nphoton.2011.154, ISSN 1749–4885ADSCrossRefGoogle Scholar
  152. 152.
    Kafri, O., Kimel, S.: Theory of two-photon absorption and emission second-order saturation effect. Chem. Phys. 5(3), 488–493 (1974).  https://doi.org/10.1016/0301-0104(74)85052-4, ISSN 0301–0104ADSCrossRefGoogle Scholar
  153. 153.
    Encyclopedia of Nanotechnology. Springer, Dordrecht (2012) (Springer reference). ISBN 9048197511Google Scholar
  154. 154.
    del Campo, A., Greiner, C.: SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. J. Micromech. Microeng. 17(6), R81–R95 (2007).  https://doi.org/10.1088/0960-1317/17/6/R01, ISSN 0960–1317CrossRefGoogle Scholar
  155. 155.
    Roxworthy, B., Ko, K.: Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. Nano Lett. 12, 796–801 (2012)ADSCrossRefGoogle Scholar
  156. 156.
    Donner, J.S., Baffou, G., McCloskey, D., Quidant, R.: Plasmon-assisted optofluidics. ACS Nano 5(7), 5457–5462 (2011).  https://doi.org/10.1021/nn200590u, ISSN 1936–0851CrossRefGoogle Scholar
  157. 157.
    Fischer, U.C.: Submicroscopic pattern replication with visible light. J. Vac. Sci. Technol. 19(4), 881 (1981).  https://doi.org/10.1116/1.571227, ISSN 00225355ADSCrossRefGoogle Scholar
  158. 158.
    Kandulski, W.: Shadow nanosphere lithography. Ph.D. thesis. Universität Bonn (2007)Google Scholar
  159. 159.
    Fischer, U.C.: Submicroscopic pattern replication with visible light. J. Vac. Sci. Technol. (1981).  https://doi.org/10.1116/1.571227ADSCrossRefGoogle Scholar
  160. 160.
    Ke, M.-Y., Wang, C.-Y., Chen, L.-Y., Chen, H.-H., Chiang, H.-L., Cheng, Y.-W., Hsieh, M.-Y., Chen, C.-P., Huang, J.: Application of nanosphere lithography to LED surface texturing and to the fabrication of nanorod LED arrays. IEEE J. Sel. Top. Quantum Electron. 15(4), 1242–1249 (2009).  https://doi.org/10.1109/JSTQE.2009.2016433, ISSN 1077–260XADSCrossRefGoogle Scholar
  161. 161.
    Zhang, X., Yonzon, C.R., Van Duyne, R.P.: Nanosphere lithography fabricated plasmonic materials and their applications. J. Mater. Res. 21(5), 1083–1092 (2006).  https://doi.org/10.1557/jmr.2006.0136, ISSN 2044–5326ADSCrossRefGoogle Scholar
  162. 162.
    Hoffmann, J.M., Yin, X., Richter, J., Hartung, A., Mass, T.W.W., Taubner, T.: Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 \(\upmu \)m. J. Phys. Chem. C 117(21), 11311–11316 (2013).  https://doi.org/10.1021/jp402383hCrossRefGoogle Scholar
  163. 163.
    Righini, M., Volpe, G., Girard, C., Petrov, D., Quidant, R.: Surface plasmon optical tweezers: tunable optical manipulation in the Femtonewton range. Phys. Rev. Lett. 100, 186804 (2008).  https://doi.org/10.1103/PhysRevLett.100.186804

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of California, BerkeleyBerkeleyUSA

Personalised recommendations