Advertisement

A Relational Model for Probabilistic Connectors Based on Timed Data Distribution Streams

  • Meng SunEmail author
  • Xiyue Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11022)

Abstract

Connectors have shown their great potential for coordination of concurrent activities encapsulated as components and services in large-scale distributed applications. In this paper, we develop a formal model for a probabilistic extension of the channel-based coordination language Reo. The model formalizes connectors with probabilistic behavior as relations on Timed Data Distribution Streams (TDDSs), which specifies properties of primitive channels and complex connectors with probabilistic behavior properly. Furthermore, the implementation of this probabilistic model has been developed in Coq, which serves to demonstrate how the model can be used to prove probabilistic connectors’ properties.

Keywords

Coordination Probabilistic connector Timed data distribution streams Coq 

Notes

Acknowledgement

The work was partially supported by the National Natural Science Foundation of China under grant no. 61772038, 61532019, 61202069 and 61272160.

References

  1. 1.
    Aichernig, B.K., Arbab, F., Astefanoaei, L., de Boer, F.S., Sun, M., Rutten, J.: Fault-based test case generation for component connectors. In: Proceedings of TASE 2009, pp. 147–154. IEEE Computer Society (2009)Google Scholar
  2. 2.
    Arbab, F.: Reo: a channel-based coordination model for component composition. Math. Struct. Comput. Sci. 14(3), 329–366 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arbab, F., Baier, C., de Boer, C., Rutten, J.: Models and temporal logics for timed component connectors. In: Cuellar, J.R., Liu, Z. (eds.) Proceedings of SEFM 2004, pp. 198–207. IEEE Computer Society (2004)Google Scholar
  4. 4.
    Arbab, F., Chothia, T., Meng, S., Moon, Y.-J.: Component connectors with QoS guarantees. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 286–304. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72794-1_16CrossRefGoogle Scholar
  5. 5.
    Arbab, F., Chothia, T., van der Mei, R., Meng, S., Moon, Y.J., Verhoef, C.: From coordination to stochastic models of QoS. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 268–287. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02053-7_14CrossRefGoogle Scholar
  6. 6.
    Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755, pp. 34–55. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-40020-2_2CrossRefGoogle Scholar
  7. 7.
    Baier, C.: Probabilistic models for Reo connector circuits. J. Univers. Comput. Sci. 11(10), 1718–1748 (2005)Google Scholar
  8. 8.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in Reo by constraint automata. Sci. Comput. Program. 61, 75–113 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Baier, C., Wolf, V.: Stochastic reasoning about channel-based component connectors. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 1–15. Springer, Heidelberg (2006).  https://doi.org/10.1007/11767954_1CrossRefGoogle Scholar
  10. 10.
    Chen, X., Sun, J., Sun, M.: A hybrid model of connectors in cyber-physical systems. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 59–74. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11737-9_5CrossRefGoogle Scholar
  11. 11.
    Eclipse Coordination Tools. http://reo.project.cwi.nl/
  12. 12.
    He, K., Hermanns, H., Chen, Y.: Models of connected things: on priced probabilistic timed Reo. In: 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), vol. 1, pp. 234–243 (2017)Google Scholar
  13. 13.
    Hong, W., Nawaz, M.S., Zhang, X., Li, Y., Sun, M.: Using Coq for formal modeling and verification of timed connectors. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 558–573. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-74781-1_37CrossRefGoogle Scholar
  14. 14.
    Jongmans, S.T.Q., Arbab, F.: Overview of thirty semantic formalisms for Reo. Sci. Ann. Comput. Sci. 22(1), 201–251 (2012)MathSciNetGoogle Scholar
  15. 15.
    Li, Y., Zhang, X., Ji, Y., Sun, M.: Capturing stochastic and real-time behavior in Reo connectors. In: Cavalheiro, S., Fiadeiro, J. (eds.) SBMF 2017. LNCS, vol. 10623, pp. 287–304. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70848-5_18CrossRefGoogle Scholar
  16. 16.
    Oliveira, N., Silva, A., Barbosa, L.S.: IMC\({}_{\text{ Reo }}\): interactive Markov chains for Stochastic Reo. J. Internet Serv. Inf. Secur. 5(1), 3–28 (2015)Google Scholar
  17. 17.
    Sun, M., Arbab, F., Aichernig, B.K., Astefanoaei, L., de Boer, F.S., Rutten, J.: Connectors as designs: modeling, refinement and test case generation. Sci. Comput. Program. 77(7–8), 799–822 (2012)zbMATHGoogle Scholar
  18. 18.
    The Coq Proof Assistant. https://coq.inria.fr/
  19. 19.
    The source code of Probabilistic Reo. https://github.com/Xiyue-Selina/Prob-Reo
  20. 20.
    Zhang, X., Hong, W., Li, Y., Sun, M.: Reasoning about connectors in Coq. In: Kouchnarenko, O., Khosravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 172–190. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57666-4_11CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Informatics and LMAM, School of Mathematical SciencesPeking UniversityBeijingChina

Personalised recommendations