Advertisement

Perfect Timed Communication Is Hard

  • Parosh Aziz Abdulla
  • Mohamed Faouzi AtigEmail author
  • Shankara Narayanan Krishna
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11022)

Abstract

We introduce the model of communicating timed automata (CTA) that extends the classical models of finite-state processes communicating through FIFO perfect channels and timed automata, in the sense that the finite-state processes are replaced by timed automata, and messages inside the perfect channels are equipped with clocks representing their ages. In addition to the standard operations (resetting clocks, checking guards of clocks) each automaton can either (1) append a message to the tail of a channel with an initial age or (2) receive the message at the head of a channel if its age satisfies a set of given constraints. In this paper, we show that the reachability problem is undecidable even in the case of two timed automata connected by one unidirectional timed channel if one allows global clocks (that the two automata can check and manipulate). We prove that this undecidability still holds even for CTA consisting of three timed automata and two unidirectional timed channels (and without any global clock). However, the reachability problem becomes decidable (in \(\mathsf {EXPTIME}\)) in the case of two automata linked with one unidirectional timed channel and with no global clock. Finally, we consider the bounded-context case, where in each context, only one timed automaton is allowed to receive messages from one channel while being able to send messages to all the other timed channels. In this case we show that the reachability problem is decidable.

References

  1. 1.
    Abdulla, P.A., Nylén, A.: Timed Petri nets and BQOs. In: Colom, J.-M., Koutny, M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 53–70. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45740-2_5CrossRefzbMATHGoogle Scholar
  2. 2.
    Abdulla, P.A., Atig, M.F., Cederberg, J.: Timed lossy channel systems. In: FSTTCS 2012, LIPIcs, 15–17 December 2012, Hyderabad, India, vol. 18, pp. 374–386. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)Google Scholar
  3. 3.
    Abdulla, P.A., Atig, M.F., Krishna, S.N.: What is decidable about perfect timed channels? CoRR, abs/1708.05063 (2017)Google Scholar
  4. 4.
    Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-timed pushdown automata. In: Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, 25–28 June 2012, pp. 35–44. IEEE Computer Society (2012)Google Scholar
  5. 5.
    Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. In: LICS. IEEE Computer Society (1993)Google Scholar
  6. 6.
    Abdulla, P., Mahata, P., Mayr, R.: Dense-timed Petri nets: checking zenoness, token liveness and boundedness. Log. Methods Comput. Sci. 3(1) (2007).  https://doi.org/10.2168/LMCS-3(1:1)2007
  7. 7.
    Akshay, S., Gastin, P., Krishna, S.N.: Analyzing timed systems using tree automata. In: 27th International Conference on Concurrency Theory, CONCUR 2016, 23–26 August 2016, LIPIcs, Québec City, Canada, vol. 59, pp. 27:1–27:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)Google Scholar
  8. 8.
    Akshay, S., Genest, B., Hélouët, L.: Decidable classes of unbounded Petri nets with time and urgency. In: Kordon, F., Moldt, D. (eds.) PETRI NETS 2016. LNCS, vol. 9698, pp. 301–322. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39086-4_18CrossRefzbMATHGoogle Scholar
  9. 9.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of different semantics for time Petri nets. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 293–307. Springer, Heidelberg (2005).  https://doi.org/10.1007/11562948_23CrossRefzbMATHGoogle Scholar
  11. 11.
    Bhave, D., Dave, V., Krishna, S.N., Phawade, R., Trivedi, A.: A perfect class of context-sensitive timed languages. In: Brlek, S., Reutenauer, C. (eds.) DLT 2016. LNCS, vol. 9840, pp. 38–50. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53132-7_4CrossRefGoogle Scholar
  12. 12.
    Bocchi, L., Lange, J., Yoshida, N.: Meeting deadlines together. In: Aceto, L., de Frutos Escrig, D. (eds.) 26th International Conference on Concurrency Theory (CONCUR 2015), Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, vol. 42, pp. 283–296. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  13. 13.
    Bouajjani, A., Echahed, R., Robbana, R.: On the automatic verification of systems with continuous variables and unbounded discrete data structures. In: Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1994. LNCS, vol. 999, pp. 64–85. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-60472-3_4CrossRefGoogle Scholar
  14. 14.
    Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of FIFO-channel systems with nonregular sets of configurations. Theor. Comput. Sci. 221(1–2), 211–250 (1999)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bouchy, F., Finkel, A., Sangnier, A.: Reachability in timed counter systems. Electron. Notes Theor. Comput. Sci. 239, 167–178 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342 (1983)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Cécé, G., Finkel, A.: Verification of programs with half-duplex communication. Inf. Comput. 202(2), 166–190 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Chambart, P., Schnoebelen, P.: Mixing lossy and perfect FIFO channels. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 340–355. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85361-9_28CrossRefGoogle Scholar
  19. 19.
    Clemente, L., Herbreteau, F., Stainer, A., Sutre, G.: Reachability of communicating timed processes. In: Pfenning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 81–96. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37075-5_6CrossRefzbMATHGoogle Scholar
  20. 20.
    Clemente, L., Lasota, S.: Timed pushdown automata revisited. In: 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, 6–10 July 2015, pp. 738–749. IEEE Computer Society (2015)Google Scholar
  21. 21.
    Clemente, L., Lasota, S., Lazic, R., Mazowiecki, F.: Timed pushdown automata and branching vector addition systems. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, 20–23 June 2017, pp. 1–12. IEEE Computer Society (2017)Google Scholar
  22. 22.
    Dang, Z.: Pushdown timed automata: a binary reachability characterization and safety verification. Theor. Comput. Sci. 302(1–3), 93–121 (2003)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Emmi, M., Majumdar, R.: Decision problems for the verification of real-time software. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 200–211. Springer, Heidelberg (2006).  https://doi.org/10.1007/11730637_17CrossRefGoogle Scholar
  24. 24.
    Ganty, P., Majumdar, R.: Analyzing real-time event-driven programs. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 164–178. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04368-0_14CrossRefGoogle Scholar
  25. 25.
    Krcal, P., Yi, W.: Communicating timed automata: the more synchronous, the more difficult to verify. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 249–262. Springer, Heidelberg (2006).  https://doi.org/10.1007/11817963_24CrossRefGoogle Scholar
  26. 26.
    La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 299–314. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78800-3_21CrossRefzbMATHGoogle Scholar
  27. 27.
    Pachl, J.K.: Reachability problems for communicating finite state machines. Ph.D. thesis, Faculty of Mathematics, University of Waterloo, Ontario (1982)Google Scholar
  28. 28.
    Trivedi, A., Wojtczak, D.: Recursive timed automata. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 306–324. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15643-4_23CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Parosh Aziz Abdulla
    • 1
  • Mohamed Faouzi Atig
    • 1
    Email author
  • Shankara Narayanan Krishna
    • 2
  1. 1.Uppsala UniversityUppsalaSweden
  2. 2.IIT BombayMumbaiIndia

Personalised recommendations