Advertisement

Monitoring Temporal Logic with Clock Variables

  • Adrián Elgyütt
  • Thomas FerrèreEmail author
  • Thomas A. Henzinger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11022)

Abstract

We solve the offline monitoring problem for timed propositional temporal logic (TPTL), interpreted over dense-time Boolean signals. The variant of TPTL we consider extends linear temporal logic (LTL) with clock variables and reset quantifiers, providing a mechanism to specify real-time constraints. We first describe a general monitoring algorithm based on an exhaustive computation of the set of satisfying clock assignments as a finite union of zones. We then propose a specialized monitoring algorithm for the one-variable case using a partition of the time domain based on the notion of region equivalence, whose complexity is linear in the length of the signal, thereby generalizing a known result regarding the monitoring of metric temporal logic (MTL). The region and zone representations of time constraints are known from timed automata verification and can also be used in the discrete-time case. Our prototype implementation appears to outperform previous discrete-time implementations of TPTL monitoring.

Notes

Acknowledgements

This research was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award).

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A.: Logics and models of real time: a survey. In: de Bakker, J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp. 74–106. Springer, Heidelberg (1992).  https://doi.org/10.1007/BFb0031988CrossRefGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM (JACM) 41(1), 181–203 (1994)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Armoni, R., Fisman, D., Jin, N.: SVA and PSL local variables - a practical approach. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 197–212. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39799-8_13CrossRefGoogle Scholar
  5. 5.
    Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Asarin, E., Maler, O., Nickovic, D., Ulus, D.: Combining the temporal and epistemic dimensions for MTL monitoring. In: Abate, A., Geeraerts, G. (eds.) FORMATS 2017. LNCS, vol. 10419, pp. 207–223. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65765-3_12CrossRefzbMATHGoogle Scholar
  7. 7.
    Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-order temporal properties. J. ACM (JACM) 62(2), 15 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Basin, D., Krstić, S., Traytel, D.: Almost event-rate independent monitoring of metric dynamic logic. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 85–102. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67531-2_6CrossRefGoogle Scholar
  9. 9.
    Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 432–443. Springer, Heidelberg (2005).  https://doi.org/10.1007/11590156_35CrossRefzbMATHGoogle Scholar
  10. 10.
    Bozga, M., Fernandez, J.-C., Ghirvu, L., Graf, S., Krimm, J.-P., Mounier, L.: IF: a validation environment for timed asynchronous systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 543–547. Springer, Heidelberg (2000).  https://doi.org/10.1007/10722167_41CrossRefGoogle Scholar
  11. 11.
    Brim, L., Dluhoš, P., Šafránek, D., Vejpustek, T.: STL*: extending signal temporal logic with signal-value freezing operator. Inf. Comput. 236, 52–67 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chai, M., Schlingloff, H.: A rewriting based monitoring algorithm for TPTL. In: International Workshop on Concurrency, Specification and Programming (CS&P), pp. 61–72 (2013)Google Scholar
  13. 13.
    Clavel, M.: Maude: specification and programming in rewriting logic. Theor. Comput. Sci. 285(2), 187–243 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990).  https://doi.org/10.1007/3-540-52148-8_17CrossRefGoogle Scholar
  15. 15.
    Dokhanchi, A., Hoxha, B., Tuncali, C.E., Fainekos, G.: An efficient algorithm for monitoring practical TPTL specifications. In: International Conference on Formal Methods and Models for System Design (MEMOCODE), pp. 184–193. IEEE (2016)Google Scholar
  16. 16.
    Feng, S., Lohrey, M., Quaas, K.: Path checking for MTL and TPTL over data words. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 326–339. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21500-6_26CrossRefGoogle Scholar
  17. 17.
    Foster, H.: Assertion-based verification: industry myths to realities (invited tutorial). In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 5–10. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70545-1_3CrossRefGoogle Scholar
  18. 18.
    Havelund, K., Peled, D., Ulus, D.: First order temporal logic monitoring with BDDs. In: Formal Methods in Computer-Aided Design FMCAD 2017, p. 116 (2017)Google Scholar
  19. 19.
    Havelund, K., Roşu, G.: Monitoring Java programs with Java pathexplorer. Electron. Notes Theor. Comput. Sci. 55(2), 200–217 (2001)CrossRefGoogle Scholar
  20. 20.
    Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46002-0_24CrossRefzbMATHGoogle Scholar
  21. 21.
    Hirshfeld, Y., Rabinovich, A.: Expressiveness of metric modalities for continuous time. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 211–220. Springer, Heidelberg (2006).  https://doi.org/10.1007/11753728_23CrossRefGoogle Scholar
  22. 22.
    Hunter, P., Ouaknine, J., Worrell, J.: Expressive completeness for metric temporal logic. In: Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 349–357. IEEE Computer Society (2013)Google Scholar
  23. 23.
    Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: a run-time assurance approach for Java programs. Form. Methods Syst. Des. 24(2), 129–155 (2004)CrossRefGoogle Scholar
  24. 24.
    Koubarakis, M.: Complexity results for first-order theories of temporal constraints. In: International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 379–390 (1994)Google Scholar
  25. 25.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990)CrossRefGoogle Scholar
  26. 26.
    Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30206-3_12CrossRefzbMATHGoogle Scholar
  27. 27.
    Maler, O., Nickovic, D.: Monitoring properties of analog and mixed-signal circuits. STTT 15(3), 247–268 (2013)CrossRefGoogle Scholar
  28. 28.
    Markey, N., Raskin, J.-F.: Model checking restricted sets of timed paths. Theor. Comput. Sci. 358(2–3), 273–292 (2006)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ničković, D., Lebeltel, O., Maler, O., Ferrère, T., Ulus, D.: AMT 2.0: qualitative and quantitative trace analysis with extended signal temporal logic. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 303–319. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-89963-3_18CrossRefGoogle Scholar
  30. 30.
    Pnueli, A.: The temporal logic of programs. In: Annual Symposium on Foundations of Computer Science, SFCS 1977, pp. 46–57. IEEE Computer Society, Washington, D.C. (1977)Google Scholar
  31. 31.
    Raskin, J.-F.: Logics, automata and classical theories for deciding real time. Ph.D. thesis, Université de Namur (1999)Google Scholar
  32. 32.
    Stolz, V., Bodden, E.: Temporal assertions using AspectJ. Electron. Notes Theor. Comput. Sci. 144(4), 109–124 (2006)CrossRefGoogle Scholar
  33. 33.
    Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Timed pattern matching. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 222–236. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10512-3_16CrossRefzbMATHGoogle Scholar
  34. 34.
    Vijayaraghavan, S., Ramanathan, M.: A Practical Guide for SystemVerilog Assertions. Springer, Boston (2005).  https://doi.org/10.1007/b137011CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Adrián Elgyütt
    • 1
  • Thomas Ferrère
    • 1
    Email author
  • Thomas A. Henzinger
    • 1
  1. 1.IST AustriaKlosterneuburgAustria

Personalised recommendations