Phytoremediation Using Native Plants

  • Anthony E. FutugheEmail author
  • Diane Purchase
  • Huw Jones
Part of the Concepts and Strategies in Plant Sciences book series (CSPS)


The unprecedented growth in industrialization has significantly increased pollution in the environment causing public health concerns. The remediation of various contaminated environmental matrices presents a global challenge. Phytoremediation using native plants can serve a dual purpose of site remediation and ecological restoration. Native plants provide an ideal residence for microbial community in their rhizosphere with enzymatic ability to accumulate, stabilize, biodegrade or volatilize various inorganic and organic contaminants. A case study that compared a native plant, Chromolaena odorata, from crude oil-polluted land in Nigeria against a referenced plant, Medicago sativa, for polycyclic aromatic hydrocarbons (PAHs) remediation is presented in this chapter. It was observed that the native plant thrived, tolerated and degraded PAHs better than the reference plant but with no significant difference in PAH degradation. The use of plants is well suited to its natural contaminated area and solar-driven, prevents erosion and eliminates secondary airborne and waterborne waste but with some challenges. Phytoremediation using native species may be effective and efficient than its non-native counterparts, and it is ecologically safer, cheaper, aesthetically pleasing, socially acceptable and easier to cultivate. Native plants in phytoremediation can be further enhanced and improved using molecular techniques to optimize the harvest time, reduce growth duration and increase biomass production and root depth.


Ecological restoration Heavy metals Microbial community Native plants Phytoremediation Polycyclic aromatic hydrocarbons Rhizosphere 


  1. Abdulazeez TL (2017) Polycyclic aromatic hydrocarbons. Rev. Cogent Environ. Sci. 3:1,1339841Google Scholar
  2. Adams N, Carroll D, Madalinski K, Rock S (2000) Introduction to phytoremediation. United States Environmental Protection Agengy, Office of Research and Development, Washington D.C., USAGoogle Scholar
  3. Affholder MC, Prudent P, Masotti V, Coulomb B, Rabier J, Nguyen-The B, Laffont-Schwob I (2013) Transfer of metals and metalloids from soil to shoots in wild rosemary (Rosmarinus officinalis L.) growing on a former lead smelter site: human exposure risk. Sci. Total Environ. 454:219–229PubMedCrossRefPubMedCentralGoogle Scholar
  4. Affholder MC, Pricop AD, Laffont-Schwob I, Coulomb B, Rabier J, Borla A, Demelas C, Prudent P (2014) As, Pb, Sb, and Zn transfer from soil to root of wild rosemary: do native symbionts matter? Plant Soil 382:219–236CrossRefGoogle Scholar
  5. Agnello AC, Bagard M, van Hullebusch ED, Esposito G, Huguenot D (2015) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci. Total Environ. 564:693–703Google Scholar
  6. Alì H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881PubMedCrossRefPubMedCentralGoogle Scholar
  7. Alkorta I, Hernandez-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev. Environ. Sci. Biotechnol. 3:71–90CrossRefGoogle Scholar
  8. Alvarez PJJ, Illman WA (2006) Bioremediation and natural attenuation: process fundamentals and mathematical models. Wiley-Interscience, New JerseyGoogle Scholar
  9. Aprill W, Sims RC (1990) Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere 20:253–265CrossRefGoogle Scholar
  10. Andersson P (2000) Physico-chemical characteristics and quantitative structure-activity relationships of PCBs. Department of Environmental chemistry, Umea University, Sweden. pp 1–10Google Scholar
  11. Aserse AA, Raanen LA, Assefa F, Hailemariam A, Lindstrom K (2012) Phylogeny and genetic diversity of native rhizobia nodulating common bean (Phaseolus vulgaris L.) in Ethiopia. Syst Appl Microbiol 35(2):120–131PubMedCrossRefGoogle Scholar
  12. Atagana HI, Anyasi RO (2017) Assessment of plants at petroleum contaminated site for phytoremediation. In: Proceedings of the international conference of recent trends in environmental science and engineering (RTESE’17) Toronto, Canada—August 23–25, Paper No. 105Google Scholar
  13. Anyasi RA, Atagana HI (2014) Phytotreatment of polychlorinated biphenyls contaminated soil by Chromolaena odorata (L) King and Robinson. Int J Environ Pollut Rem 2:73–79Google Scholar
  14. Archer M, Caldwell R (2004) Response of Six Australian plant species to heavy metal contamination at an abandoned mine site. Water Air Soil Pollut 157:257–267CrossRefGoogle Scholar
  15. Ayodele RI, Nwauzor GO, Akporido SO (2015) Biodegradation of polycyclic aromatic hydrocarbons in agricultural soil contaminated with crude oil from Nigeria refinery using Pleurotus sajor-caju. J Bioremed Biodeg 6(4):1–7Google Scholar
  16. Baker AJM, Ernst WHO, Van Der Ent A, Malaisse F, Ginocchio R (2010) Metallophytes: the unique biological resource, its ecology and conservational status in Europe, Central Africa and Latin America. In: Batty LC, Hallberg KB (eds) Ecology of industrial pollution. Cambridge University Press, Cambridge, UK, pp 21–40Google Scholar
  17. Bamforth SM, Singleton I (2005) Review bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736CrossRefGoogle Scholar
  18. Barcelo J, Poschenrieder C (2003). Phytoremediation: principles and perspectives, contributions to science. BarcelonaGoogle Scholar
  19. Barea JM, Palenzuela J, Cornejo P, Sanchez-Castro I, Navarro-Fernandez C, Lopez-García A, Estrada B, Azcon R, Ferrol N, Azcon-Aguilar C (2011) Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J Arid Environ 75:1292–1301CrossRefGoogle Scholar
  20. Becerril Soto JM, Barrutia Sarasua O, García Plazaola JI, Hernández A, Olano Mendoza JM, Garbisu Crespo C (2007) Especies nativas de suelos contaminados por metales: aspectos ecofisiológicos y su uso en fitorremediación. Ecosistemas 16(2):50–55Google Scholar
  21. Bech J, Poschenrieder C, Llugany M., Barceló J, Tume P, Tobias FJ, Barranzuela JL, Vásquez ER (1997) Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. Sci Total Environ 203:83–91Google Scholar
  22. Bech J, Poschenrieder C, Barcelo J, Lansac A (2002) Plants from mine spoils in the South American area as potential sources of germplasm for phytoremediation technologies. Acta Biotechnol 22(1–2):5–11CrossRefGoogle Scholar
  23. Bech J, Duran P, Roca N, Poma W, Sánchez I, Roca-Perez L, Boluda R, Barcelo J, Poschenrieder C (2012) Accumulation of Pb and Zn in Bidens triplinervia and Senecio sp. spontaneous species from mine spoils in Peru and their potential use in phytoremediation. J Geochem Explor 123:109–113Google Scholar
  24. Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37(2):251–268PubMedCrossRefGoogle Scholar
  25. Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EA (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32(2):432–440PubMedCrossRefGoogle Scholar
  26. Bhandary A (2007) Remediation technologies for soil and groundwater. US Environmental Council. ScienceGoogle Scholar
  27. Bidleman TF, Leone AD (2004) Soil–air exchange of organochlorine pesticides in the Southern United States. Environ Pollut 128:49–57PubMedCrossRefGoogle Scholar
  28. Bonfranceschi BA, Flocco CG, Donati ER (2009) Study of the heavy metal phytoextraction of two forage species growing in an hydroponic environment. J Hazard Mater 165:366–371PubMedCrossRefGoogle Scholar
  29. Boukhris A, Laffont-Schwob I, Mezghani I, El Kadri L, Prudent P, Pricop A, Tatoni T, Chaieb M (2015) Screening biological traits and fluoride contents of native vegetations in arid environments to select efficiently fluoride-tolerant native plant species for in-situ phytoremediation. Chemosphere 119:217–223PubMedCrossRefGoogle Scholar
  30. Cabrerizo A, Dachs J, Moeckel C, Ojeda MJ, Caballero G, Barcelo D, Jones KC (2011) Factors influencing the soil-air partitioning and the strength of soils as a secondary source of polychlorinated biphenyls to the atmosphere. Environ Sci Technol 45:4785–4792PubMedCrossRefGoogle Scholar
  31. Calvachi B (2002) Una Mirada Regional. La Biodiversidad Bogotana. Rev. La Tadeo, pp 89–98.Google Scholar
  32. Chandra R, Kumar V, Tripathi S, Sharma P (2018) Heavy metal phytoextraction potential of native weeds and grasses from endocrine-disrupting chemicals rich complex distillery sludge and their histological observations during in-situ phytoremediation. Ecol Eng 111:143–156CrossRefGoogle Scholar
  33. Chaney R, Malik M, Li Y, Brown S, Brewer E, Angle J, Baker A (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284PubMedCrossRefGoogle Scholar
  34. Chekol T, Vough LR, Chaney R (2004) Phytoremediation of polychlorinated biphenylcontaminated soils: the rhizosphere effect. Environ Int 30(6):799–804PubMedCrossRefGoogle Scholar
  35. Chen Y, Gamliel A, Stapleton JJ, Aviad T (1991) Chemical, physical, and microbial changes related to plant growth in disinfested soils. In: Katan J, DeVay JE (eds) Soil solarization. CRC Press, Boca Raton, Florida, pp 103–129Google Scholar
  36. Chen Y, Katan J, Gamliel A, Aviad T, Schnitzer M (2000) Involvement of soluble organic matter in increased plant growth in solarized soils. Biol Fertil Soils 32:28–34CrossRefGoogle Scholar
  37. Chen Y, Banks MK, Schwab AP (2003) Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass (Paniculum viratum L.). Environ Sci Toxicol 37:5778–5782Google Scholar
  38. CL:AIRE (2001). CL:AIRE view newsletter. Autumn EditionGoogle Scholar
  39. Commission of the European Communities (1986) Council directive of 12 June 1986 on the protection of the environment and in particular of the soil, when sewage sludge is used in agriculture. Off J Eur Comm L181(86/278/EEC):6–12Google Scholar
  40. Conesa HM, Faz A, Arnaldos R (2006) Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Union mining district (SE Spain). Sci Total Environ 366(1):1–11PubMedCrossRefPubMedCentralGoogle Scholar
  41. Connell DW, Miller GJ, Mortimer MR, Shaw GR, Anderson SM (1999) Persistent lipophilic contaminants and other chemical residues in the Southern Hemisphere. Crit Rev Environ Sci Technol 29(1):47–82Google Scholar
  42. Cortina J, Amat B, Castillo V, Fuentes D, Maestre FT, Padilla FM, Rojo L (2011) The restoration of vegetation cover in the semi-arid Iberian southeast. J Arid Environ 75:1377–1384CrossRefGoogle Scholar
  43. Crnkovic D, Ristic M, Antonovic D (2006) Distribution of heavy metals and arsenic in soils of Belgrade (Serbia and Montenegro). Soil Sediment Contam 15:581–589CrossRefGoogle Scholar
  44. Cunningham SD, Anderson TA, Schwav AP, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56:55–114Google Scholar
  45. Cunningham S, Berti W, Huang J (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397CrossRefGoogle Scholar
  46. Cunningham S, Berti W (2000) Phytoextraction and phytostabilization: technical, economic and regulatory considerations of the soil-lead issue. In: Terry N, Bunuelos G (eds) Phytoremediation of contaminated soils and waters. CRC Press LLC, Boca Raton, FL, USA, pp 363–380Google Scholar
  47. D’Amato C, Torres JPM, Malm O (2002) DDT (Dichlorodiphenyltrichloroethane): toxicity and environmental contamnation—a review. Quımica Nova 25(6):995–1002CrossRefGoogle Scholar
  48. Das M, Maiti S (2008) Comparison between availability of heavy metals in dry and wetland tailing of an abandoned copper tailing pond. Environ Monit Assess 137:343–350PubMedCrossRefGoogle Scholar
  49. Del Rio M, Font R, Almela C, Velez D, Montoro R, Bailon ADH (2002) Heavy metals and arsenic uptake by wild vegetation in the Guadiamar river area after the toxic spill of the Aznalcóllar mine. J Biotechnol 98:125–137PubMedCrossRefGoogle Scholar
  50. De Koe T, Jaques NMM (1993) Arsenate tolerance in Agrostis castellana and Agrostis deticulata. Plant Soil 151:185–191CrossRefGoogle Scholar
  51. Demirezen D, Aksoy A (2004) Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere 56:685–696PubMedCrossRefPubMedCentralGoogle Scholar
  52. Ding KQ, Luo YM (2005) Bioremediation of Copper and Benzo[a]pyrene-contaminated soil by alfalfa. J Agro-Environ Sci 24:766–770Google Scholar
  53. Diez S, Negrete JM, Madrid SM, Hernandez JP, Hernandez JD (2016) Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Sci Total Environ 542:809–816PubMedCrossRefPubMedCentralGoogle Scholar
  54. Dubus IG, Hollis JM, Brown CD (2000) Pesticides in rainfall in Europe. Environ Pollut 110:331–344PubMedCrossRefPubMedCentralGoogle Scholar
  55. Duran A (2010) Transferencia de metales de suelo a planta en áreas mineras: Ejemplos de los Andes peruanos y de la Cordillera Prelitoral Catalana. Universidad de BarcelonaGoogle Scholar
  56. Dzantor EK, Woolston J (2001) Enhancing dissipation of Aroclor 1248 (PCB) using substrate amendment in rhizosphere soil. J Environ Sci Health Part A 36(10):1861–1871CrossRefGoogle Scholar
  57. Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. WileyGoogle Scholar
  58. EPA (2002) The foundation for global action on persistent organic pollutants: a United State perspective.
  59. EPA (2005) The use and effectiveness of phytoremediation to treat persistent organic pollutants. USEPA, Office of Solid Waste and Emergency Response Technology Innovation and Field Services Division Washington, DCGoogle Scholar
  60. Emoghene AO, Futughe AE (2011) Impact of soil solarisation on Amaranthus viridis and microbial population. Niger J Sci Environ 10(3):44–52Google Scholar
  61. Emoghene AO, Futughe AE (2016) Fungi as an alternative to agrochemicals to control plant diseases. In: Purchase D (ed) Fungal applications in sustainable environmental biotechnology. Springer International Publishing, Switzerland, pp 43–62pCrossRefGoogle Scholar
  62. Extension Toxicology Network (ETOXNET), (2001) Pesticide Information ProfilesGoogle Scholar
  63. Fabietti G, Biasioli M, Barberis R, Ajmone-Marsan F (2009) Soil contamination by organic and inorganic pollutants at the regional scale: the case of Piedmont, Italy. J Soils Sediment 10:290–300CrossRefGoogle Scholar
  64. Fan S, Li P, Gong Z, Ren W, He N (2008) Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L.). Chemosphere 71:1593–1598PubMedCrossRefPubMedCentralGoogle Scholar
  65. Fantke P, Jolliet O (2015) Life cycle human health impacts of 875 pesticides. Int J Life Cycle Assess 21:722–733CrossRefGoogle Scholar
  66. Farrell-Jones J (2003) Petroleum hydrocarbons and polyaromatic hydrocarbons. In: Thompson CK, Nathanail PC (eds) Chemical analysis of contaminated land. Blackwell Publishing Ltd, OxfordGoogle Scholar
  67. Federal Remediation Technologies Roundtable (FRTR) (2007) The remediation technologies screening matrix and reference guide. Version 4.0. Website:
  68. Fernández S, Poschenrieder C, Marceno C, Gallego JR, Jimenez-Gamez D, Bueno A, Afif E (2017) Phytoremediation capability of native plant species living on Pb-Zn and Hg-As mining wastes in the Cantabrian range, north of Spain. J Geochem Explor 174:10–20CrossRefGoogle Scholar
  69. Foucault Y, Lévêque T, Xiong T, Schreck E, Austruy A, Shahid M, Dumat C (2013) Green manure plants for remediation of soils polluted by metals and metalloids: ecotoxicity and human bioavailability assessment. Chemosphere 93:1430–1435PubMedCrossRefPubMedCentralGoogle Scholar
  70. Freitas H, Prasad MNV, Pratas J (2004) Analysis of serpentinophytes from north-east of Portugal for trace metal accumulation—relevance to the management of mine environment. Chemosphere 54(11):1625–1642PubMedCrossRefPubMedCentralGoogle Scholar
  71. Futughe AE (2012) Phytoremediation: a case study. J Inst Environ Sci 21(3):50–52Google Scholar
  72. Garcia-Sanchez A, Santa Regina I, Jimenez O (1996) Arsenic environmental impact on mining areas (Salamanca, Spain). Toxicol Environ Chem 53:137–141CrossRefGoogle Scholar
  73. Gardea-Torresdey JL, Haque N, Peralta-Videa JR, Jones GL, Gill TG (2008) Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA. Environ Pollut 153(2):362–368PubMedCrossRefPubMedCentralGoogle Scholar
  74. Gerhardt KE, Gerwing PD, Huang X-D, Greenberg BM (2015) Microbe-assistedphytoremediation of petroleum impacted soil: a scientifically proven greentechnology. In: Fingas M (ed) Handbook of oil spill science and technology. Wiley, New Jersey, pp 407–427Google Scholar
  75. Gerhardt KE, Gerwing PD, Greenberg BM (2017) Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Sci 256:170–185Google Scholar
  76. Ghosh M, Singh S (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18CrossRefGoogle Scholar
  77. Ginocchio R, Baker AJM (2004) Metallophytes in Latin America: a remarkable biological and genetic resource scarcely known and studied in the region. Rev Chil Hist Nat 77(1):185–194CrossRefGoogle Scholar
  78. Goix S, Leveque T, Xiong TT, Schreck E, Baeza-Squiban A, Geret F, Uzu G, Austruy A, Dumat C (2014) Environmental and health impacts of fine and ultrafine metallic particles: assessment of threat scores. Environ Res 133:185–194PubMedCrossRefPubMedCentralGoogle Scholar
  79. Graham C, Ramsden JJ (2008) Introduction to global warming: complexity and security. IOS Press, pp 147–184Google Scholar
  80. Greipsson S (2011) Phytoremediation. Nature Educ Know 3(10):7Google Scholar
  81. Harner T, Bidleman TF (1998) Octanol air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air. Environ Sci Technol 32:1494–1502CrossRefGoogle Scholar
  82. Harvey PJ, Campanella BF, Castro PML, Harms H, Lichtfouse E (2002) Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Review articles: phytoremediation. Environ Sci Pollut R 9:29–47CrossRefGoogle Scholar
  83. Harvey RC (1991) Polycyclic aromatic hydrocarbons: chemistry and carcinogenicity. Cambridge University Press, N.Y.Google Scholar
  84. He CQ, Liu JM, Li J, Liang X, Chen XP, Lei YR, Zhu D (2013) Spatial distribution, source analysis, and ecological risk assessment of DDTs in typical wetland surface soils of Poyang Lake. Environ Earth Sci 68:1135–1141CrossRefGoogle Scholar
  85. He Z, Shen J, Ni Z, Tang J, Song S, Chen J, Zhao L (2015) Electrochemically created roughened lead plate for electrochemical reduction of aqueous CO2. Catal Commun 72:38–42CrossRefGoogle Scholar
  86. Heckenroth A, Rabier J, Dutoit T, Torre F, Prudent P, Laffont-Schwob I (2016) Selection of native plants with phytoremediation potential for highly contaminated Mediterranean soil restoration: tools for non-destructive and integrative approach. J Environ Manage 183:850–863PubMedCrossRefPubMedCentralGoogle Scholar
  87. Henderson L (2001) Alien weeds and invasive plants. Handbook No. 12. ARC-PPRI, Pretoria, South AfricaGoogle Scholar
  88. Henry H (2006) Natural revegetation of an aged petroleum landfarm impacted with PAHs and heavy metals: ecological restoration, remediation, and risk. Ph.D. Thesis, University of CincinnatiGoogle Scholar
  89. Hernandez L, Probst A, Probst JL, Ulrich E (2003) Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Sci Total Environ 312:195–219PubMedCrossRefPubMedCentralGoogle Scholar
  90. Holm LG, Plucknett DL, Pancho JV, Herberger PD (1977) The world’s worst weeds: distribution and biology. University Press of Hawaii, Honolulu, HIGoogle Scholar
  91. Hongbo S, Liye C, Gang X, Kun Y, Lihua Z, Junna S (2011) Progress in phytoremediating heavy-metal contaminated soils. In: Detoxification of heavy metals. Springer, Berlin Heidelberg, pp 73–s90Google Scholar
  92. Hooda V (2007) Phytoremediation of toxic metals from soil and waste water. J Environ Biol 28(2):367–376PubMedGoogle Scholar
  93. Horne A (2000) Phytoremediation by constructed wetlands. In Terry N, Bañuelos G (eds) Phytoremediation of contaminated soils and waters. CRC Press LLC, Boca Raton, FL, USA, pp 25–51Google Scholar
  94. Howsam M, Jones KC, Ineson P (2000) PAHs associated with the leaves of tree species. I—Concentrations and profiles. Environ Pollut 108:413–424PubMedCrossRefGoogle Scholar
  95. Hu N, Ding D, Li G (2014) Natural plant selection for radioactive waste remediation I: radionuclide contamination and remediation through plants (Gupta DK, Walther C, eds) Springer International Publishing Switzerland, 33–53 ppGoogle Scholar
  96. Huang T, Guo Q, Tian H, Mao XX, Ding ZY, Zhang G, Gao H (2014) Assessing spatial distribution, sources, and human health risk of organochlorine pesticide residues in the soils of arid and semiarid areas of northwest China. Environ Sci Pollut Res 21:6124–6135CrossRefGoogle Scholar
  97. Isimekhai KA, Garelick H, Watt J, Purchase D (2017) Matal distribution and risk assessment in soil from an informal e-waste recycling site in Lagos State, Nigeria. Environ Sci Pollut Res 24(20):17206–17219CrossRefGoogle Scholar
  98. Jacobsen CS, Brinch UC, Ekelund F (2002) Method for spiking soil samples with organic compounds. Appl Environ Microbiol 68(4):1808–1816PubMedPubMedCentralCrossRefGoogle Scholar
  99. Jesus JM, Danko AS, Fiúza A, Borges MT (2015) Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change. Environ Sci Pollut Res 22:6511–6525CrossRefGoogle Scholar
  100. Johnston W, Proctor J (1977) A comparative study of metal levels in plants from two contrasting lead-mine sites. Plant Soil 46:251–257CrossRefGoogle Scholar
  101. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386CrossRefGoogle Scholar
  102. Jonnalagadda SB, Nenzou G (1997) Studies on arsenic rich mine dumps. II. The heavy element uptake by vegetation. J Environ Sci Health A 32(2):455–464Google Scholar
  103. Jordahl JL, Foster L, Schnoor JL, Pedro V (1997) Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation. Environ Toxicol Chem 16:1318–1321CrossRefGoogle Scholar
  104. Kaiser J (2000) Toxicology: just how bad is dioxin? Science (Washington, D.C.) 288(5473):1941–1944Google Scholar
  105. Kamal M, Ghaly A, Mahmoud N, CoteCote R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29:1029–1039PubMedCrossRefPubMedCentralGoogle Scholar
  106. Katan J, Greenberger A, Alon H, Grinstein A (1976) Solar heating by polyethylene mulching for the control of disease caused by soil-borne pathogens. Phytoparasitica 66:683–688Google Scholar
  107. Kaushal J, Bhasin SK, Bhardwaj P (2015) Phytoremediation: a review focusing on phytoremediation mechanisms. Int J Res Chem Environ 5:1–9Google Scholar
  108. Khan F, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies original research article. J Environ Manage 71:95–122PubMedCrossRefPubMedCentralGoogle Scholar
  109. Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risks of heavy metals in contaminated soils and food crop irrigated with wastewater in Beijing, China. Environ Pollut 152:686–692PubMedCrossRefGoogle Scholar
  110. Khan MA, Chattha MR, Farooq K, Jawed MA, Farooq M, Imran M, Iftkhar M, Kasana MI (2015) Effect of farmyard manure levels and NPK applications on the pea plant growth, pod yield and quality. Life Sci Int J 9:3178–3181Google Scholar
  111. Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C (2017) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182:247–268CrossRefGoogle Scholar
  112. Krumins JA, Goodey NM, Gallagher F (2015) Plant-soil interactions in metal contaminated soils. Soil Biol Biochem 80:224–231CrossRefGoogle Scholar
  113. Kurt-Karakus PB, Bidleman TF, Staebler RM, Jones KC (2006) Measurement of DDT fluxes from a historically treated agricultural soil in Canada. Environ Sci Technol 40:4578–4585PubMedCrossRefPubMedCentralGoogle Scholar
  114. Ladislas S, Gerente C, Chazarenc F, Brisson J, Andres Y (2014) Floating treatment wetlands for heavy metal removal in highway stormwater ponds. Ecol Eng 80:85–91CrossRefGoogle Scholar
  115. Lewandowski I, Schmidt U, Londo M, Faaij A (2006) The economic value of the phytoremediation function—assessed by the example of cadmium remediation by willow (Salix sp.). Agric Syst 89:68–89CrossRefGoogle Scholar
  116. Li YF, Cai DJ, Shan ZJ, Zhu ZL (2001) Gridded usage inventories of technical hexachlorocyclohexane and lindane for china with 1/6 degrees latitude by 1/4 degrees longitude resolution. Arch Environ Contam Toxicol 41:261–266PubMedCrossRefPubMedCentralGoogle Scholar
  117. Li YY, Yang H (2013) Bioaccumulation and degradation of pentachloronitrobenzene in Medicago sativa. J Environ Manage 119:143–150PubMedCrossRefPubMedCentralGoogle Scholar
  118. Liedekerke MV, Prokop G, Rabl-Berger S, Kibblewhite M, Louwagie G (2014) Progress in the management of contaminated sites in Europe. European Commission Joint Research Centre. Institute for Environment and Sustainability.
  119. Litter M, Alarcón-Herrera M, Arenas M, Armienta M, Avilés M, Cáceres R, Cipriani H, Cornejo L, Dias L, Cirelli A, Farfán E, Garrido S, Lorenzo L, Morgada M, Olmos M, Perez A (2012) Small-scale and household methods to remove arsenic from water for drinking purposes in Latin America. Sci Total Environ 429:107–122Google Scholar
  120. Liu Y, Li S, Ni Z, Qu M, Zhong D, Ye C, Tang F, (2016) Pesticides in persimmons, jujubes and soil from China: residue levels, risk assessment and relationship between fruits and soils. Sci Total Environ 542:620–628Google Scholar
  121. Liu J, Zhang X-H, Li T-Y, Wu Q-X, Jin Z-J (2014) Soil characteristics and heavy metal accumulation by native plants in a Mn mining area of Guangxi, South China. Environ Monit Assess 186(4):2269–2279PubMedCrossRefGoogle Scholar
  122. Liu MX, Yang YY, Yun XY, Zhang MM, Wang J (2015) Occurrence and assessment of organochlorine pesticides in the agricultural topsoil of Three Gorges Dam region, China. Environ Earth Sci 74:5001–5008CrossRefGoogle Scholar
  123. Lorestani B, Cheragi M, Yousefi N (2011) Phytoremediation potential of native plants growing on a heavy metals contaminated soil of copper mine in Iran. Int Sch Sci Res Innov 5(5):299–304Google Scholar
  124. Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579PubMedCrossRefPubMedCentralGoogle Scholar
  125. Ma X, Pardue J (2005) Enhancement of reductive dechlorination of aged hexachlorobenzene in constructed wetlands. The Third International Phytotechnologies ConferenceGoogle Scholar
  126. Macnair MR (1993) The genetics of metal tolerance in vascular plants. New Phytol 124(4):541–559CrossRefGoogle Scholar
  127. Mandelbaum R-T, Allan D-L, Wackett L-P (1995) Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine. Appl Environ Microbiol 61:1451–1457PubMedPubMedCentralCrossRefGoogle Scholar
  128. Marchiol L, Fellet G, Boscutti F, Montella C, Mozzi R, Guarino C (2013) Gentle remediation at the former “Pertusola Sud” zinc smelter: evaluation of native species for phytoremediation purposes. Ecol Eng 53:343–353CrossRefGoogle Scholar
  129. Markham J, Young I, Renault S (2011) Plant facilitation on a mine tailings dump. Restor Ecol 19:569–571CrossRefGoogle Scholar
  130. Marrugo-Negrete J, Marrugo-Madrid S, Pinedo-Hernandez J, Durango-Hernandez J, Diez S (2016) Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Sci Total Environ 542:809–816PubMedCrossRefGoogle Scholar
  131. Marshall AG, Rodgers RP (2004) Petroleomics: the next grand challenge for chemical analysis. Acc Chem Res 37:53–59PubMedCrossRefGoogle Scholar
  132. Matthews D, Moran B, Otte M (2005) Screening the wetland plant species Alisma plantago-aquatica, Carex rostrata and Phalaris arundinacea for innate tolerance to zinc and comparison with Eriophorum angustifolium and Festuca rubra Merlin. Environ Pollut 134:343–351PubMedCrossRefPubMedCentralGoogle Scholar
  133. McCutcheon SC, Schnoor JL (2003) Overview of phytotransformation and control of wastes. In: McCutcheon S, Schnoor J (eds) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken, NJGoogle Scholar
  134. McGrath SP, Sidoli CMD, Baker AJM, Reeves RD (1993) The potential for the use of metal-accumulating plants for the in situ decontamination of metalpolluted soils. In: Eijasackers HJP, Hamers T (eds) Integrated soil and sediment research: a basis for proper protection. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 673–676CrossRefGoogle Scholar
  135. Mcleod AM, Paterson G, Drouillard KG, Haffner GD (2014) Ecological factors contributing to variability of persistent organic pollutant bioaccumulation within forage fish communities of the Detroit River, Ontario, Canada. Environ Toxicol Chem 33(8):1825–1831PubMedCrossRefPubMedCentralGoogle Scholar
  136. Meers E, Van Slycken S, Adriaensen K, Ruttens A, Vangronsveld J, Du Laing G, Tack FMG (2010) The use of bio-energy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78(1):35–41PubMedCrossRefPubMedCentralGoogle Scholar
  137. Mendez MO, Maier R (2008) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Biotechnol 7:47–59CrossRefGoogle Scholar
  138. Mganga N, Manoko M, Rulangaranga Z (2011) Classification of plants according to their heavy metal content around North Mara Gold Mine, Tanzania: implication for phytoremediation. Tanz J Sci 37:109–119Google Scholar
  139. Miri M, Derakhshan Z, Allahabadi A, Ahmadi E, Oliveri Conti G, Ferrante M, Ebrahimi Aval H (2016) Mortality and morbidity due to exposure to outdoor air pollution in Mashhad Metropolis, Iran. The Air Q model approach. Environ Res 151:451–457PubMedCrossRefPubMedCentralGoogle Scholar
  140. Moreno-Jimenez E, Penalosa JM, Manzano R, Carpena-Ruiz RO, Gamarra R, Esteban E (2009) Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. J Hazard Mater 162(2–3):854–859PubMedCrossRefPubMedCentralGoogle Scholar
  141. Nathanail J, Bardos P, Nathanail P (2007) Contaminated land management: ready reference. Land Quality Press & EPP PublicationsGoogle Scholar
  142. Navarro-Aviñó J, Aguilar A, López-Moya J (2007) Aspectos bioquímicos y genéticos de la tolerancia y acumulación de metales pesados en plantas. Ecosistemas 16:10–25Google Scholar
  143. Nedelkoska T, Doran P (2000) Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Min Eng 13:549–561CrossRefGoogle Scholar
  144. Nedunuri KV, Govindaraju RS, Banks MK, Schwab AP, Chen Z (2000) Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. J Environ Eng 126(6):483–490CrossRefGoogle Scholar
  145. Nedunuri KV, Lowell C, Meade W, Vonderheide AP, Shann JR (2010) Management practices and phytoremediation by native grasses. Int J Phytorem 12(2):200–214CrossRefGoogle Scholar
  146. Nwaichi EO, Frac M, Nwoha PA, Eragbor P (2015) Enhanced phytoremediation of crude oil-polluted soil by four plant species: effect of inorganic and organic bioaugumentation. Int J Phytorem 17:1253–1261CrossRefGoogle Scholar
  147. Ojasti J (2001) Estudio sobre el estado actual de las especies exóticas, Proyecto Estrategia Regional de Biodiversidad para los Países del Trópico Andino. Caracas-VenezuelaGoogle Scholar
  148. Oluseyi T, Olayinka K, Alo B, Smith R (2011) Improved analytical extraction and clean-up techniques for the determination of pahs in soil samples. Int J Environ Res 5(3):681–690Google Scholar
  149. Ottenhof CJM, Faz Cano A, Arocena JM, Nierop KGJ, Verstraten JM, Van Mourik JM (2007) Soil organic matter from pioneer species and its implications to phytostabilization of mined sites in the Sierra de Cartagena (Spain). Chemosphere 69:1341–1350PubMedCrossRefPubMedCentralGoogle Scholar
  150. Ouvrard S, Barnier C, Bauda P, Beguiristain T, Biache C, Bonnard M, Caupert C, Cébron A, Cortet J, Cotelle S, Dazy M, Faure P, Masfaraud JF, Nahmani J, Palais F, Poupin P, Raoult N, Vasseur P, Morel JL, Leyval C (2011) In situ assessment of phytotechnologies for multicontaminated soil management. Int J Phytorem 13:245–263CrossRefGoogle Scholar
  151. Parraga-Aguado I, Querejeta JI, Gonzalez-Alcaraz MN, Jimenez-Carceles FJ, Conesa HM (2014) Usefulness of pioneer vegetation for the phytomanagement of metal(loid)s enriched tailings: grasses vs. shrubs vs. trees. J Environ Manage 133:51–58PubMedCrossRefPubMedCentralGoogle Scholar
  152. Peralta-Videa JR, de la Rosa G, Gonzalez JH, Gardea-Torresdey JL (2004) Effects of the growth stage on the heavy metal tolerance of alfalfa plants. Adv Environ Res 8:679–685CrossRefGoogle Scholar
  153. Pfeifer H, Derron M, Rey D, Schlegel C, Atteia O, Piazza R, Dubois J-P, Mandia Y (2000) Natural trace element input to the soil-sediment-water-plantsystem: examples of background and contaminated situations in Switzerland, Eastern France and Northern Italy. In: Markert B, Friese K (eds), Trace elements—their distribution and effects in the environment, trace metals in the environment. Elsevier, pp 33–86Google Scholar
  154. Phillips LA, Greer CW, Germida JJ (2006) Culture-based and culture independent assessment of the impact of mixed and single plant treatments on rhizosphere microbial communities in hydrocarbon contaminated flare-pit soil. Soil Biol Biochem 38:2823–2833CrossRefGoogle Scholar
  155. Pies C, Yang Y, Hofmann T (2007) Distribution of polycyclic aromatic hydrocarbons (PAHs) in floodplain soils of the Mosel and Saar River. J. Soils Sediments 7:216–222CrossRefGoogle Scholar
  156. Pilon E, Zayed A, DeSouza M, Lin Z, Terry N (2000) Remediation of seleniumpolluted soils and waters by phytovolatilization. In: Terry N, Bañuelos G (eds), Phytoremediation of contaminated soils and waters. CRC Press LLC, Boca Raton, FL, USA, pp 72–94Google Scholar
  157. Poschenrieder C, Bech J, Llugany M, Pace A, Fenes E, Barcelo J (2001) Copper in plant species in a copper gradient in Catalonia (North East Spain) and their potential for phytoremediation. Plant Soil 230(2):247–256CrossRefGoogle Scholar
  158. Prasad M (2003) Phytoremediation of metal-polluted ecosystems: hype for commercialization. Russ J Plant Physiol 50:686–701CrossRefGoogle Scholar
  159. Prasad M (2004) Phytoremediation of metals in the environment for sustainable development. Proc Indian Natn Sci Acad B 70(70):71–98Google Scholar
  160. Prasad MNV, De Oliveira Freitas HM (2003) Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6(3):110–146Google Scholar
  161. Pratas J, Prasad MNV, Freitas H, Conde L (2005) Plants growing in abandonedmines of Portugal are useful for biogeochemical exploration of arsenic, antimony, tungsten and mine reclamation. J Geochem Explor 85(3):99–107CrossRefGoogle Scholar
  162. Radosevich M, Traina S-J, Tuovinen O-H (1996) Biodegradation of atrazine in surface soils and subsurface sediments collected from an agricultural research Agrifarm. Biodegradation 7:137–149PubMedCrossRefGoogle Scholar
  163. Rascio N, Navari F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181PubMedCrossRefPubMedCentralGoogle Scholar
  164. Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, 304 ppGoogle Scholar
  165. Reilley KA, Banks MK, Schwab AP (1996) Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J Environ Qual 25(2):212–219CrossRefGoogle Scholar
  166. Rentz JA, Alvarez PJJ, Schnoor JL (2005) Repression of Pseudomonas putida phenanthrene degrading bacteria by plant root extracts and exudates. Environ Microbiol 6:574–583CrossRefGoogle Scholar
  167. Reyes G, Bermúdez R, De Abreu A, Alvarado O, Domínguez J (2006) Heavy metals in plants of gold mining areas in forest reserve Imataca, Venezuela, vol 10. Universidad, Cienciay Tecnología, pp 259–262Google Scholar
  168. Rissato SA, Galhiane MS, Fernandes JR, Gerenutti M, Gomes H, Ribeiro R, del Almeida V (2015) Evaluation of Ricinus communis L. for the phytoremediation of polluted soil with organochlorine pesticides. BioMed Res Int, Article ID 549863:8.
  169. Romeh AA (2014) Phytoremediation of cyanophos insecticide by Plantago major L. in water. J Environ Health Sci Eng 12:38Google Scholar
  170. Sciacca S, Oliveri Conti G (2009) Mutagens and carcinogens in drinking water. Mediterr J Nutr Metabol 2:157–162CrossRefGoogle Scholar
  171. Schat H, Llugany M, Bernhard R (2000) Metal-specific patterns of tolerance, uptake and transport of heavy metals in hyperaccumulating and non-hyperaccumulating metallophytes. Phytorem Contaminated Soil Water 1:171–188Google Scholar
  172. Shallari S, Schwartz C, Hasko A, Morel JL (1998) Heavy metals in soils and plants of serpentine and industrial sites of Albania. Sci Total Environ 209:133–142PubMedCrossRefGoogle Scholar
  173. Siciliano SD, Germida JJ, Banks K, Greer CW (2003) Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Appl Environ Microbiol 69:483–489PubMedPubMedCentralCrossRefGoogle Scholar
  174. Singh S, Thorat V, Kaushik PC, Raj K, Eapen S, D’Souza FS (2009) Potential of Chromolaena odorata for phytoremediation of 137Cs from solution and low level nuclear waste. J Hazard Mat 162:743–745CrossRefGoogle Scholar
  175. Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21(8):914–919PubMedCrossRefPubMedCentralGoogle Scholar
  176. Stratfor (2016) A new militant group in the Niger Delta? Available from: Assessed 13 Jan 2017
  177. Struthers JK, Jayachandran K, Moorman T-B (1998) Biodegradation of atrazine by Agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated soil. Appl Environ Microbiol 64:3368–3375PubMedPubMedCentralCrossRefGoogle Scholar
  178. Sun J-H, Wang G-L, Chai Y, Zhang G, Li J, Feng J (2009) Distribution of polycyclic aromatic hydrocarbons (PAHs) in Henan Reach of the Yellow River, Middle China. Ecotox Environ Saf 72:1614–1624CrossRefGoogle Scholar
  179. Sun JT, Pan LL, Zhan Y, Lu HN, Tsang DCW, Liu WX, Zhu LZ (2016) Contamination of phthalate esters, organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China. Sci Total Environ 544:670–676PubMedCrossRefGoogle Scholar
  180. Tang S, Willey NJ (2003) Uptake of 134Cs by four species from Asteraceae and two variants from Chenopodiaceae grown in two types of Chinese soil. Plant Soil 250:75–81CrossRefGoogle Scholar
  181. Tao S, Liu W, Li Y, Yang Y, Zuo Q, Li BG, Cao J (2008) Organochlorine pesticides contaminated surface soil as reemission source in the Haihe Plain, China. Environ Sci Technol 42:8395–8400PubMedCrossRefGoogle Scholar
  182. Tanhan P, Kruatrachue M, Pokethitiyook P, Chaiyarat R (2007) Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Chemosphere 68:323–329PubMedCrossRefGoogle Scholar
  183. Testiati E, Parinet J, Massiani C, Laffont-Schwob I, Rabier J, Pfeifer HR, Lenoble V, Masotti V, Prudent P (2013) Trace metal and metalloid contamination levels in soils and in two native plant species of a former industrial site: evaluation of the phytostabilization potential. J Hazard Mater 248:131–141PubMedCrossRefGoogle Scholar
  184. The New York Time (2014) One-fifth of China’s farmland is polluted, state study finds. Print on 18 April 2014, on Page A7 of the New York editionGoogle Scholar
  185. UNEP (2011) Environmental assessment of Ogoniland [online]. Available from: Accessed 13 Jan 2017
  186. United Nations Environment Program UNEP (2001) Final act of the conference of plenipotentiaries on the Stockholm convention on persistent organic pollutants. Tech. Rep. UNEP/POPS/CONF/4, UNEPGoogle Scholar
  187. United Nations Environment Programme (2007) Guidance on the global monitoring plan for persistent organic pollutants, Preliminary Version%3e United Nations Environment Programme (UNEP), Nairobi, KenyaGoogle Scholar
  188. U. S. Environmental Protection Agency (2000) Introduction to phytoremediation. National Risk Management Research Laboratory, EPA/600/R-99/107Google Scholar
  189. USEPA (2008) Polycyclic aromatic hydrocarbons (PAHs) Office of solid waste. Washington DC 20460Google Scholar
  190. Van de Mortel JE, Almar Villanueva L, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Loren V, van Themaat E, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142(3):1127–1147PubMedPubMedCentralCrossRefGoogle Scholar
  191. Vassilev A, Schwitzguebel J, Thewys T, Van der Lelie D, Vangronsveld J (2004) The use of plants for remediation of metal-contaminated soils. Sci World J 4:9–34CrossRefGoogle Scholar
  192. Viktorova J, Jandova Z, Madlenakova M, Prouzova P, Bartunek V, Vrchotova B, Lovecka P, Musilova L, Macek T (2017) Correction: native phytoremediation potential of Urtica dioica for removal of PCBs and heavy metals can be improved by genetic manipulations using constitutive CaMV 35S promoter. PLoS ONE 12(10):e0187053PubMedPubMedCentralCrossRefGoogle Scholar
  193. Walker D, Clemente R, Bernal M (2004) Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 57:215–224PubMedCrossRefGoogle Scholar
  194. Watkins AJ, Macnair MR (1991) Genetics of arsenic tolerance in Agrostis capillaris L. Heredity 66:47–54CrossRefGoogle Scholar
  195. Wang Y, Tian Z, Zhu H, Cheng Z, Kang M, Luo C, Li J, Zhang G (2012) Polycyclic aromatic hydrocarbons(PAHs) in soil and vegetation near an e-waste recycling site in South China: concentration, distribution, source and risk assessment. Sci Total Environ 439:187–193PubMedCrossRefGoogle Scholar
  196. Wenzel W, Jockwer F (1999) Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environ Pollut 104:145–155CrossRefGoogle Scholar
  197. Wenzel WW, Lombi E, Adriano DC (1999) Biogeochemical processes in the rhizosphere: role in phytoremediation of metal-polluted soils. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants—from molecules to ecosystems. Springer-Verlag, Berlin, pp 271–303Google Scholar
  198. White JC (2001) Plant-facilitated mobilization and translocation of weathered 2,2-bis (pchlorophenyl)-1,1-dichloroethylene (p, p′-DDE) from an agricultural soil. Environ Toxicol Chem 20:2047–2052PubMedGoogle Scholar
  199. Wild E, Dent J, Thomas GO, Jones KC (2005) Direct observation of organic contaminant uptake, storage, and metabolism within plant roots. Environ Sci Technol 39:3695–3702PubMedCrossRefPubMedCentralGoogle Scholar
  200. Wild SR, Jones KC (1995) Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environ Pollut 88:91–108PubMedCrossRefPubMedCentralGoogle Scholar
  201. Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–800PubMedCrossRefGoogle Scholar
  202. World Wildlife Fund (2005) Toxic fact sheetsGoogle Scholar
  203. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. IRSN Ecol. Scholar
  204. Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in terrestrial plants growing on a contaminated Florida site. Sci Total Environ 368:456–464Google Scholar
  205. Zhang AP, Chen ZY, Ahrens L, Liu WP, Li YF (2012) Concentrations of DDTs and enantiomeric fractions of chiral DDTs in agricultural soils from Zhejiang Province, China, and correlations with total organic carbon and pH. J Agric Food Chem 60:8294–8301PubMedCrossRefPubMedCentralGoogle Scholar
  206. Zhang Y, Liu J, Zhou Y, Gong T, Liu Y, Wang J, Ge Y (2013a) Enhanced phytoremediation of mixed heavy metal (mercury)-organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione s-stransferase and human P450 2E1. J Hazard Mater 260:1100–1107PubMedCrossRefPubMedCentralGoogle Scholar
  207. Zhang H, Luo Y, Teng Y, Wan H (2013b) PCB contamination in soils of the Pearl River Delta, South China: levels, sources, and potential risks. Environ Sci Pollut Res Int 20:5150–5159PubMedCrossRefPubMedCentralGoogle Scholar
  208. Zhao S, Arthur E-L, Coats J-R (2003) Influence of microbial inoculation (Pseudomonas sp. Strain ADP), the enzyme atrazine chlorohydrolase, and vegetation on the degradation of atrazine and metolachlor in soil. J Agric Food Chem 51:3043–3048PubMedCrossRefPubMedCentralGoogle Scholar
  209. Zhong YC, Zhu LZ (2013) Distribution, input pathway and soil-air exchange of polycyclic aromatic hydrocarbons in Banshan Industry Park, China. Sci Total Environ 444:177–182PubMedCrossRefPubMedCentralGoogle Scholar
  210. Zhu X, Venosa AD, Suidan MT, Lee K (2001) Guidelines for the bioremediation of marine shorelines and freshwater wetlands. US Environmental Protection Agency, Cincinnati, OH.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Anthony E. Futughe
    • 1
    Email author
  • Diane Purchase
    • 1
  • Huw Jones
    • 1
  1. 1.Department of Natural Sciences, Faculty of Science and TechnologyMiddlesex UniversityLondonUK

Personalised recommendations