Phytoremediation Using Aquatic Plants

  • Jonathan FletcherEmail author
  • Nigel Willby
  • David M. Oliver
  • Richard S. Quilliam
Part of the Concepts and Strategies in Plant Sciences book series (CSPS)


Freshwaters are affected by a diverse range of pollutants which increase the demand for effective remediation. Aquatic phytoremediation is a nature-based solution that has the potential to provide efficient, spatially adaptable and multi-targeted treatment of polluted waters using the ability of macrophytes to take-up, sequester and degrade pollutants. This chapter considers the primary phytoremediation mechanisms that macrophytes employ to remove inorganic, organic and biological waterborne pollutants before highlighting some of the common macrophyte accumulators that have been studied. Three common macrophyte planting systems (i) constructed wetlands (CWs), (ii) wild macrophyte planting/harvesting and (iii) floating treatment wetlands (FTWs) are considered to understand how macrophytes are deployed for targeted aquatic phytoremediation. Important practical considerations for implementing aquatic phytoremediation include the use of invasive species, the optimal harvesting time and frequency for pollutant removal with macrophyte biomass, and the full extent of the role that microbial biofilms play in phytoremediation. In this chapter, these issues are unpacked and recommendations for future programmes of research and development are made. Finally, the opportunities to generate ‘added value’ from expanding aquatic phytoremediation in terms of the provision of ecosystem services and the potential for resource recovery are outlined.


Macrophytes Phytoremediation Floating treatment wetlands Resource recovery Ecosystem services Diffuse pollution 



Funding for this work was provided by the Scottish Government HydroNation Scholars Programme.


  1. Abed SN, Almuktar SA, Scholz M (2017) Remediation of synthetic greywater in mesocosm—scale floating treatment wetlands. Ecol Eng 102:303–319CrossRefGoogle Scholar
  2. Afrous A, Manshouri M, Liaghat A et al (2011) Mercury and arsenic accumulation by three species of aquatic plants in Dezful, Iran. Afr J Agric Res 6:5391–5397Google Scholar
  3. Akeel K (2013) Empirical investigation of water pollution control through use of Phragmites australis. Dissertation, Brunel UniversityGoogle Scholar
  4. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881CrossRefGoogle Scholar
  5. Anderson C, Moreno F, Meech J (2005) A field demonstration of gold phytoextraction technology. Miner Eng 18:385–392CrossRefGoogle Scholar
  6. Anning AK, Korsah PE, Addo-Fordjour P (2013) Phytoremediation of wastewater with Limnocharis flava, Thalia geniculata and Typha latifolia in constructed wetlands. Int J Phytorem 15:452–464CrossRefGoogle Scholar
  7. Ansa EDO, Awuah E, Andoh A et al (2015) A review of the mechanisms of faecal coliform removal from algal and duckweed waste stabilization pond systems. Am J Environ Sci 11:28–34CrossRefGoogle Scholar
  8. Ansari AA, Gill S, Khan FA et al (2014) Phytoremediation systems for the recovery of nutrients from eutrophic waters. In: Ansari AA et al (eds) Eutrophication: causes, consequences and control. Springer, Dordrecht, pp 239–248Google Scholar
  9. Arora A, Saxena S, Sharma DK (2006) Tolerance and phytoaccumulation of Chromium by three Azolla species. World J Microbiol Biotechnol 22:97–100CrossRefGoogle Scholar
  10. Awuah E (2006) The role of attachment in the removal of faecal bacteria from macrophyte and algal waste stabilization ponds. Pathogen removal mechanisms in macrophyte and algal waste stabilization ponds. Dissertation, Wageningen UniversityGoogle Scholar
  11. Awuah E, Gyasi S (2014) Role of protozoa on faecal bacteria removal in macrophyte and algal waste stabilization ponds. Microbiol J 2:41–50CrossRefGoogle Scholar
  12. Ayaz S, Saygin O (1996) Hydroponic tertiary treatment. Water Res 30:1295–1298CrossRefGoogle Scholar
  13. Ayyasamy PM, Rajakumar S, Sathishkumar M et al (2009) Nitrate removal from synthetic medium and groundwater with aquatic macrophytes. Desalination 242:286–296CrossRefGoogle Scholar
  14. Barber JT, Sharma HA, Ensley HE et al (1995) Detoxification of phenol by the aquatic angiosperm, Lemna gibba. Chemosphere 31:3567–3574CrossRefGoogle Scholar
  15. Barrat-Segretain M (2001) Biomass allocation in three macrophyte species in relation to the disturbance level of their habitat. Freshw Biol 46:935–945CrossRefGoogle Scholar
  16. Bartodziej WM, Blood SL, Pilgrim K (2017) Aquatic plant harvesting: an economical phosphorus removal tool in an urban shallow lake. J Aquat Plant Manage 55:26–34Google Scholar
  17. Bennicelli R, Stępniewska Z, Banach A et al (2004) The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere 55:141–146CrossRefPubMedPubMedCentralGoogle Scholar
  18. Berger E, Haase P, Kuemmerlen M et al (2017) Water quality variables and pollution sources shaping stream macroinvertebrate communities. Sci Total Environ 587–588:1–10CrossRefPubMedPubMedCentralGoogle Scholar
  19. Boonsong K, Chansiri M (2008) Efficiency of vetiver grass cultivated with floating platform technique in domestic wastewater treatment. AU J Technol 12:73–80Google Scholar
  20. Borne KE (2014) Floating treatment wetland influences on the fate and removal performance of phosphorus in stormwater retention ponds. Ecol Eng 69:76–82CrossRefGoogle Scholar
  21. Bouldin JL, Farris JL, Moore MT et al (2006) Hydroponic uptake of atrazine and lambda-cyhalothrin in Juncus effusus and Ludwigia peploides. Chemosphere 65:1049–1057Google Scholar
  22. Broadley M, Brown, P, Cakmak I et al (2011) Function of nutrients: micronutrients. In: Marschner P (ed) Mineral nutrition of higher plants, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  23. Cao W, Zhang Y (2014) Removal of nitrogen (N) from hypereutrophic waters by ecological floating beds (EFBs) with various substrates. Ecol Eng 62:148–152CrossRefGoogle Scholar
  24. Carbonell A, Aarabi M, DeLaune R et al (1998) Arsenic in wetland vegetation: availability, phytotoxicity, uptake and effects on plant growth and nutrition. Sci Total Environ 217:189–199CrossRefGoogle Scholar
  25. Cardinal P, Anderson JC, Carlson JC et al (2014) Macrophytes may not contribute significantly to removal of nutrients, pharmaceuticals, and antibiotic resistance in model surface constructed wetlands. Sci Total Environ 482:294–304CrossRefPubMedPubMedCentralGoogle Scholar
  26. Carpenter SR, Adams MS et al (1977) The macrophyte tissue nutrient pool of a hardwater eutrophic lake: implications for macrophyte harvesting. Aquat Bot 3:239–255CrossRefGoogle Scholar
  27. Chambers PA, Lacoul AP, Murphy AKJ et al (2008) Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595:9–26CrossRefGoogle Scholar
  28. Chandra R, Yadav S (2011) Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus. Int J Phytorem 13:580–591CrossRefGoogle Scholar
  29. Chang Y, Ku C, Lu H (2014) Effects of aquatic ecological indicators of sustainable green energy landscape facilities. Ecol Eng 71:144–153CrossRefGoogle Scholar
  30. Chen Y, Vymazal J, Březinová T (2016a) Occurrence, removal and environmental risk assessment of pharmaceuticals and personal care products in rural wastewater treatment wetlands. Sci Total Environ 566–567:1660–1669CrossRefPubMedPubMedCentralGoogle Scholar
  31. Chen Z, Cuervo D, Mülle J et al (2016b) Hydroponic root mats for wastewater treatment—a review. Environ Sci Pollut Res 23:15911–15928CrossRefGoogle Scholar
  32. Cheng S (2003) Heavy metal pollution in China: origin, pattern and control. Environ Sci Pollut Res 10:192–198CrossRefGoogle Scholar
  33. Coleman J, Hench K, Garbutt K et al (2001) Treatment of domestic wastewater by three plant species in constructed wetlands. Water Air Soil Pollut 128:283–295CrossRefGoogle Scholar
  34. Dai Y, Jia C, Liang W et al (2012) Effects of the submerged macrophyte Ceratophyllum demersum L. on restoration of a eutrophic waterbody and its optimal coverage. Ecol Eng 40:113–116CrossRefGoogle Scholar
  35. Dawson F, Clinton E, Ladle M (1991) Invertebrates on cut weed removed during weed-cutting operations along an English river the River Frome, Dorset. Aquac Res 22:113–132CrossRefGoogle Scholar
  36. Decamp O, Warren A (2000) Investigation of Escherichia coli removal in various designs of subsurface flow wetlands used for wastewater treatment. Ecol Eng 14:293–299CrossRefGoogle Scholar
  37. Demars B, Edwards A (2007) Tissue nutrient concentrations in freshwater aquatic macrophytes: high inter-taxon differences and low phenotypic response to nutrient supply. Freshw Biol 52:2073–2086CrossRefGoogle Scholar
  38. Deng H, Ye Z, Wong M (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut 132:29–40CrossRefPubMedPubMedCentralGoogle Scholar
  39. Denny P (1972) Sites of nutrient absorption in aquatic macrophytes. J Ecol 60:819–829CrossRefGoogle Scholar
  40. Dettenmaier E, Doucette W, Bugbee B (2009) Chemical hydrophobicity and uptake by plant roots. Environ Sci Technol 43:324–329CrossRefPubMedPubMedCentralGoogle Scholar
  41. Dhir B (2013) Phytoremediation: role of aquatic plants in environmental clean-up. Springer, IndiaGoogle Scholar
  42. Dhir B, Sharmila P, Saradhi P (2008) Photosynthetic performance of Salvinia natans exposed to chromium and zinc rich wastewater. Braz J Plant Physiol 20:61–70CrossRefGoogle Scholar
  43. Dhote S, Dixit S (2009) Water quality improvement through macrophytes—a review. Environ Monit Assess 152:149–153CrossRefPubMedPubMedCentralGoogle Scholar
  44. Dosnon-Olette R, Couderchet M, Oturan MA (2011) Potential use of Lemna minor for the phytoremediation of isoproturon and glyphosate. Int J Phytorem 13:601–612CrossRefGoogle Scholar
  45. Du W, Li Z, Zhang Z et al (2017) Composition and biomass of aquatic vegetation in the Poyang Lake, China. Scientifica.
  46. Duman F, Mehmet A, Ae C et al (2007) Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis). Ecotoxicology 16:457–463CrossRefPubMedPubMedCentralGoogle Scholar
  47. Dunn S, Brown I, Sample J et al (2012) Relationships between climate, water resources, land use and diffuse pollution and the significance of uncertainty in climate change. J Hydrol 434–435:19–35CrossRefGoogle Scholar
  48. Edwards P (2015) Aquaculture environment interactions: past, present and likely future trends. Aquaculture 447:2–14CrossRefGoogle Scholar
  49. Eichert T, Fernández V (2011) Uptake and release of elements by leaves and other aerial plant parts. In: Marschner P (ed) Mineral nutrition of higher plants, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  50. Eid EM, Shaltout KH, El-Sheikh MA et al (2012) Seasonal courses of nutrients and heavy metals in water, sediment and above- and below-ground Typha domingensis biomass in Lake Burullus (Egypt): perspectives for phytoremediation. Flora Morphol Distrib Funct Ecol Plants 207:783–794CrossRefGoogle Scholar
  51. El-Kheir W, Ismail G, Farid A et al (2007) Assessment of the efficiency of duckweed (Lemna gibba) in wastewater treatment. Int J Agric Biol 9:681–687Google Scholar
  52. El-Shahawi M, Hamza A, Bashammakh A et al (2010) An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta 80:1587–1597CrossRefPubMedPubMedCentralGoogle Scholar
  53. Engelhardt K, Ritchie M (2001) Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411:687–689CrossRefPubMedPubMedCentralGoogle Scholar
  54. Engelhardt K, Ritchie M (2002) The effect of aquatic plant species richness on wetland ecosystem processes. Ecology 83:2911–2924CrossRefGoogle Scholar
  55. Faulwetter J, Gagnon V, Sundberg C et al (2009) Microbial processes influencing performance of treatment wetlands: a review. Ecol Eng 35:987–1004CrossRefGoogle Scholar
  56. Feng N, Yu J, Zhao H, Cheng Y et al (2017) Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships. Sci Total Environ 583:352–368CrossRefPubMedPubMedCentralGoogle Scholar
  57. Fernandez R, Whitwell T, Riley M et al (1999) Evaluating semiaquatic herbaceous perennials for use in herbicide phytoremediation. J Am Soc Hortic Sci 124:539–544CrossRefGoogle Scholar
  58. Fraser L, Carty S, Steer D (2004) A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms. Biores Technol 94:185–192CrossRefGoogle Scholar
  59. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418CrossRefPubMedPubMedCentralGoogle Scholar
  60. Fuhrimann S, Nauta M, Pham-Duc P et al (2017) Disease burden due to gastrointestinal infections among people living along the major wastewater system in Hanoi, Vietnam. Adv Water Resour 108:439–449CrossRefGoogle Scholar
  61. Gabrielson J, Perkins M, Welch E (1984) The uptake, translocation and release of phosphorus by Elodea densa. Hydrobiologia 111:43–48CrossRefGoogle Scholar
  62. Gao J, Garrison A, Hoehamer C et al (2000) Uptake and phytotransformation of o,p′-DDT and p,p′-DDT by axenically cultivated aquatic plants. J Agric Food Chem 48:6121–6127CrossRefPubMedPubMedCentralGoogle Scholar
  63. Garrison A, Nzengung V, Avents J et al (2000) Phytodegratdation or p,p′-DDT and the enantiomers of o,p′-DDT. Environ Sci Technol 34:1663–1670CrossRefGoogle Scholar
  64. Garver E, Dubbe D, Pratt D (1988) Seasonal patterns in accumulation and partitioning of biomass and macronutrients in Typha spp. Aquat Bot 32:115–127CrossRefGoogle Scholar
  65. Ge Y, Han W, Huang C et al (2015) Positive effects of plant diversity on nitrogen removal in microcosms of constructed wetlands with high ammonium loading. Ecol Eng 82:614–623CrossRefGoogle Scholar
  66. Ge Z, Feng C, Wang X et al (2016) Seasonal applicability of three vegetation constructed floating treatment wetlands for nutrient removal and harvesting strategy in urban stormwater retention ponds. Int Biodeterior Biodegrad 112:80–87CrossRefGoogle Scholar
  67. Geissen V, Mol H, Klumpp E et al (2015) Emerging pollutants in the environment: a challenge for water resource management. Int Soil Water Conserv Res 3:57–65CrossRefGoogle Scholar
  68. Geng Y, Han W, Yu C et al (2017) Effect of plant diversity on phosphorus removal in hydroponic microcosms simulating floating constructed wetlands. Ecol Eng 1071:10–119Google Scholar
  69. Glick B (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393CrossRefPubMedPubMedCentralGoogle Scholar
  70. Gomes H (2012) Phytoremediation for bioenergy: challenges and opportunities. Environ Technol Rev 1:59–66CrossRefGoogle Scholar
  71. Gomes M, Hauser-Davis R, de Souza A et al (2016) Metal phytoremediation: general strategies, genetically modified plants and applications in metal nanoparticle contamination. Ecotoxicol Environ Saf 134:133–147CrossRefGoogle Scholar
  72. Gulati R, Dionisio Pires L, Van Donk E (2008) Lake restoration studies: failures, bottlenecks and prospects of new ecotechnological measures. Limnol Ecol Manage Inland Waters 38:233–247CrossRefGoogle Scholar
  73. Gumbricht T (1993) Review nutrient removal processes in freshwater submersed macrophyte systems. Ecol Eng 1:1–30CrossRefGoogle Scholar
  74. Guo Y, Liu Y, Zeng G et al (2014) A restoration-promoting integrated floating bed and its experimental performance in eutrophication remediation. J Environ Sci 26:1090–1098CrossRefGoogle Scholar
  75. Ha N, Sakakibara M, Sano S (2009) Phytoremediation of Sb, As, Cu, and Zn from contaminated water by the aquatic macrophyte Eleocharis acicularis. Clean Soil Air Water 37:720–725Google Scholar
  76. Haack S, Duris J, Kolpin D et al (2016) Contamination with bacterial zoonotic pathogen genes in U.S. streams influenced by varying types of animal agriculture. Sci Total Environ 563–564:340–350CrossRefPubMedPubMedCentralGoogle Scholar
  77. Habib S, Yousuf A (2016) Impact of different harvesting techniques on the population of macrophyte-associated-invertebrate community in an urban lake. J Pollut Eff Control 4:158. Scholar
  78. Hafez N, Abdalla S, Ramadan Y (1998) Accumulation of phenol by Potamogeton crispus from aqueous industrial waste. Bull Environ Contam Toxicol 60:944–948CrossRefPubMedPubMedCentralGoogle Scholar
  79. Hancock M (2000) Artificial floating islands for nesting Black-throated Divers Gavia arctica in Scotland: construction, use and effect on breeding success. Bird Study 47(2):165–175Google Scholar
  80. Hawkesford M, Horst W, Kichey T et al (2011) Functions of macronutrients. In: Marschner P (ed) Mineral nutrition of higher plants, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  81. Haygarth P, Jarvie H, Powers S (2014) Sustainable phosphorus management and the need for a long-term perspective: the legacy hypothesis. Enviorn Sci Technol 48:8417–8419CrossRefGoogle Scholar
  82. Headley T, Tanner C (2008) Floating treatment wetlands: an innovative option for stormwater quality applications. In: 11th International conference on wetland systems for water pollution controlGoogle Scholar
  83. Heathwaite AL (2010) Multiple stressors on water availability at global to catchment scales: understanding human impact on nutrient cycles to protect water quality and water availability in the long term. Freshw Biol 55:241–257CrossRefGoogle Scholar
  84. Heisler J, Glibert P, Burkholder J et al (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8:3–13CrossRefPubMedPubMedCentralGoogle Scholar
  85. Hilt S, Gross E, Hupfer M et al (2006) Restoration of submerged vegetation in shallow eutrophic lakes—a guideline and state of the art in Germany. Limnologica 36:155–171CrossRefGoogle Scholar
  86. Hirneisen K, Sharma M, Kniel K (2012) Human enteric pathogen internalization by root uptake into food crops. Foodborne Pathog Dis 9:396–405CrossRefPubMedPubMedCentralGoogle Scholar
  87. Houda N, Hanene C, Ines M et al (2014) Isolation and characterization of microbial communities from a constructed wetlands system: a case study in Tunisia. Afr J Microbiol Res 8:529–538CrossRefGoogle Scholar
  88. Hu C, Zhang L, Hamilton D et al (2007) Physiological responses induced by copper bioaccumulation in Eichhornia crassipes (Mart.). Hydrobiologia 579:211–218CrossRefGoogle Scholar
  89. Hu M, Yuan J, Yang X et al (2010) Effects of temperature on purification of eutrophic water by floating eco-island system. Acta Ecol Sin 30:310–318CrossRefGoogle Scholar
  90. Huser B, Futter M, Lee J et al (2016) In-lake measures for phosphorus control: the most feasible and cost-effective solution for long-term management of water quality in urban lakes. Water Res 97:42–152Google Scholar
  91. Islam M, Ueno Y, Sikder M et al (2013) Phytofiltration of arsenic and cadmium from the water environment using Micranthemum umbrosum as a hyperaccumulator. Int J Phytorem 15:1010–1021CrossRefGoogle Scholar
  92. Jackson L (1998) Paradigms of metal accumulation in rooted aquatic vascular plants. Sci Total Environ 219:223–231CrossRefGoogle Scholar
  93. Javadi E, Moattar F, Karbassi A et al (2005) Removal of lead, cadmium and manganese from liquid solution using water lily (Nymphaea alba). J Food Agric Environ 88:1220–1225Google Scholar
  94. Jiang Y, Lei M, Duan L et al (2015) Integrating phytoremediation with biomass valorisation and critical element recovery: a UK contaminated land perspective. Biomass Bioenergy 83:328–339CrossRefGoogle Scholar
  95. Jones D, Cross P, Withers P et al (2013) Nutrient stripping: the global disparity between food security and soil nutrient stocks. J Appl Ecol 50:851–862CrossRefGoogle Scholar
  96. Jones T, Willis N, Gough R et al (2017) An experimental use of floating treatment wetlands (FTWs) to reduce phytoplankton growth in freshwaters. Ecol Eng 99:316–323CrossRefGoogle Scholar
  97. Kadlec R (2009) Comparison of free water and horizontal subsurface treatment wetlands. Ecol Eng 35:159–174CrossRefGoogle Scholar
  98. Kadlec R, Wallace S (2009) Treatment wetlands. CRC Press, Boca RatonGoogle Scholar
  99. Kamal M, Ghaly A, Mahmoud N et al (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29:1029–1039CrossRefPubMedPubMedCentralGoogle Scholar
  100. Kamarudzaman A, Ismail N, Aziz R et al (2011) Removal of nutrients from landfill leachate using subsurface flow constructed wetland planted with Limnocharis flava and Scirpus atrovirens. In: IPCBEE, 2011 international conference on environmental and computer science, Singapore, 16th–18th Sept 2011Google Scholar
  101. Kansiime F, Oryem-Origa H, Rukwago S (2005) Comparative assessment of the value of papyrus and cocoyams for the restoration of the Nakivubo wetland in Kampala, Uganda. Phys Chem Earth Parts A/B/C 30:698–705CrossRefGoogle Scholar
  102. Kara Y (2010) Bioaccumulation of nickel by aquatic macrophytes. Desalin Water Treat 19:325–328CrossRefGoogle Scholar
  103. Karathanasis A, Potter C, Coyne M (2003) Vegetation effects on fecal bacteria, BOD, and suspended solid removal in constructed wetlands treating domestic wastewater. Ecol Eng 20:157–169CrossRefGoogle Scholar
  104. Karim M, Manshadi F, Karpiscak M et al (2004) The persistence and removal of enteric pathogens in constructed wetlands. Water Res 38:1831–1837CrossRefPubMedPubMedCentralGoogle Scholar
  105. Karnchanawong S (1995) Comparative study of domestic wastewater treatment efficiencies between facultative pond and water spinach pond. Water Sci Technol 32:263–270CrossRefGoogle Scholar
  106. Karpiscak M, Gerba C, Watt P et al (1996) Multi-species plant systems for wastewater quality improvements and habitat enhancement. Water Sci Technol 33:231–236CrossRefGoogle Scholar
  107. Kennen K, Kirkwood N (2015) Phyto principles and resources for site remediation and landscape design. Routledge, OxtonCrossRefGoogle Scholar
  108. Keizer-Vlek H, Verdonschot P, Verdonschot R et al (2014) The contribution of plant uptake to nutrient removal by floating treatment wetlands. Ecol Eng 73:684–690CrossRefGoogle Scholar
  109. Kiiskila J, Sarkar D, Feuerstein K et al (2017) A preliminary study to design a floating treatment wetland for remediating acid mine drainage-impacted water using vetiver grass (Chrysopogon zizanioides). Environ Sci Pollut Res 24:27985–27993CrossRefGoogle Scholar
  110. Kintu Sekiranda S, Kiwanuka S (1997) A study of nutrient removal efficiency of Phragmites mauritianus in experimental reactors in Uganda. Hydrobiologia 364:83–91CrossRefGoogle Scholar
  111. Kipasika H, Buza J, Smith W et al (2016) Removal capacity of faecal pathogens from wastewater by four wetland vegetation: Typha latifolia, Cyperus papyrus, Cyperus alternifolius and Phragmites australis. Afr J Microbiol Res 10:654–661CrossRefGoogle Scholar
  112. Kivaisi A (2001) The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review. Ecol Eng 16:545–560CrossRefGoogle Scholar
  113. Koelbener A, Ramseier D, Suter M (2008) Competition alters plant species response to nickel and zinc. Plant Soil 303:241–251CrossRefGoogle Scholar
  114. Körner S, Vermaat J (1998) The relative importance of Lemna gibba L., bacteria and algae for the nitrogen and phosphorus removal in duckweed-covered domestic wastewater. Water Res 32:3651–3661CrossRefGoogle Scholar
  115. Kuiper J, Verhofstad M, Louwers E et al (2017) Mowing submerged macrophytes in shallow lakes with alternative stable states: battling the good guys? Environ Manage 59:619–634CrossRefPubMedPubMedCentralGoogle Scholar
  116. Kumar Mishra V, Tripathi B (2008) Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Biores Technol 99:7091–7097CrossRefGoogle Scholar
  117. Kutty S, Ngatenah S, Isa M et al (2009) Nutrients removal from municipal wastewater treatment plant effluent using Eichhornia crassipes. Int J Environ Ecol Eng 36:828–833Google Scholar
  118. Kyambadde J, Kansiime F, Gumaelius L et al (2004) A comparative study of Cyperus papyrus and Miscanthidium violaceum-based constructed wetlands for wastewater treatment in a tropical climate. Water Res 38:475–485CrossRefPubMedPubMedCentralGoogle Scholar
  119. Ladislas S, Gérente C, Chazarenc F et al (2013) Performances of two macrophytes species in floating treatment wetlands for cadmium, nickel, and zinc removal from urban stormwater runoff. Water Air Soil Pollut 224:1408–1418CrossRefGoogle Scholar
  120. Lam Q, Schmalz B, Fohrer N et al (2011) The impact of agricultural best management practices on water quality in a North German lowland catchment. Environ Monit Assess 183:351–379. Scholar
  121. Landesman L, Fedler C, Duan R (2011) Plant nutrient phytoremediation using duckweed. In: Ansari A, Al E (eds) Eutrophication: causes consequences and control. Springer Science+Business Media, Berlin, pp 341–354Google Scholar
  122. Lang Martins A, Reissmann C, Boeger M et al (2010) Efficiency of Polygonum hydropiperoides for phytoremediation of fish pond effluents enriched with N and P. J Aquat Plant Manage 48:116–120Google Scholar
  123. Lawford R, Bogardi J, Marx S et al (2013) Basin perspectives on the water–energy–food security nexus. Curr Opin Environ Sustain 5:607–616CrossRefGoogle Scholar
  124. Lesage E, Mundia C, Rousseau D et al (2008) Removal of heavy metals from industrial effluents by the submerged aquatic plant Myriophyllum spicatum. In: Vymazal J (ed) Wastewater treatment plan dynamics and management in constructed and natural wetlands. Springer, Dordrecht, pp 211–221CrossRefGoogle Scholar
  125. Li X, Song H, Li W et al (2010) An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecol Eng 36:382–390CrossRefGoogle Scholar
  126. Li H, Hao H, Yang X et al (2012) Purification of refinery wastewater by different perennial grasses growing in a floating bed. J Plant Nutr 35:93–110CrossRefGoogle Scholar
  127. Liang M, Zhang C, Peng C et al (2011) Plant growth, community structure, and nutrient removal in monoculture and mixed constructed wetlands. Ecol Eng 37:309–316CrossRefGoogle Scholar
  128. Liess M, Carsten Von Der Ohe P (2005) Analyzing effects of pesticides on invertebrate communities in streams. Environ Toxicol Chem 24:954–965CrossRefPubMedPubMedCentralGoogle Scholar
  129. Lintelmann J, Katayama A, Kurihara N et al (2003) Endocrine disruptors in the environment (IUPAC technical report). Pure Appl Chem 75:631–681CrossRefGoogle Scholar
  130. Low K, Lee C, Tai C (1994) Biosorption of copper by water hyacinth roots. J Environ Sci Health Part A Environ Sci Eng Toxicol 29:171–188Google Scholar
  131. Lu Q, He Z, Graetz D et al (2010) Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environ Sci Pollut Res 17:84–96CrossRefGoogle Scholar
  132. Lu Q, He Z, Graetz D et al (2011) Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Environ Sci Pollut Res 18:978–986CrossRefGoogle Scholar
  133. Lu H, Ku C, Chang Y (2015) Water quality improvement with artificial floating islands. Ecol Eng 74:371–375CrossRefGoogle Scholar
  134. Lu B, Xu Z, Li J et al (2018) Removal of water nutrients by different aquatic plant species: an alternative way to remediate polluted rural rivers. Ecol Eng 110:18–26CrossRefGoogle Scholar
  135. Lynch J, Fox L, Owen J et al (2015) Evaluation of commercial floating treatment wetland technologies for nutrient remediation of stormwater. Ecol Eng 75:61–69CrossRefGoogle Scholar
  136. Macek T, Macková M, Káš J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34CrossRefPubMedPubMedCentralGoogle Scholar
  137. Machado A, Beretta M, Fragoso R et al (2016) Overview of the state of the art of constructed wetlands for decentralized wastewater management in Brazil. J Environ Manage 187:560–570CrossRefPubMedPubMedCentralGoogle Scholar
  138. Maine M, Suñé N, Lagger S (2004) Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes. Water Res 38:1494–1501CrossRefGoogle Scholar
  139. Makvana K, Sharma M (2013) Assessment of pathogen removal potential of root zone technology from domestic wastewater. Univers J Environ Res Technol 3:401–406Google Scholar
  140. Manios T, Stentiford E, Millner P (2003) Removal of heavy metals from a metaliferous water solution by Typha latifolia plants and sewage sludge compost. Chemosphere 53:487–494CrossRefPubMedPubMedCentralGoogle Scholar
  141. Marimon Z, Xuan Z, Chang N (2013) System dynamics modeling with sensitivity analysis for floating treatment wetlands in a stormwater wet pond. Ecol Model 267:66–79CrossRefGoogle Scholar
  142. Masclaux-Daubresse C, Daniel-Vedele F et al (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157CrossRefPubMedPubMedCentralGoogle Scholar
  143. Masi F, Rizzo A, Regelsberger M (2017) The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. J Environ Manage 216:275–284CrossRefPubMedPubMedCentralGoogle Scholar
  144. Matsuzaki S, Usio N, Takamura N et al (2009) Contrasting impacts of invasive engineers on freshwater ecosystems: an experiment and meta-analysis. Oecologia 158:673–686CrossRefPubMedPubMedCentralGoogle Scholar
  145. McAndrew B, Ahn C (2017) Developing an ecosystem model of a floating wetland for water quality improvement on a stormwater pond. J Environ Manage 202:198–207CrossRefPubMedPubMedCentralGoogle Scholar
  146. McAndrew B, Ahn C, Spooner J (2016) Nitrogen and sediment capture of a floating treatment wetland on an urban stormwater retention pond—the case of the Rain Project. Sustainability 8:1–14CrossRefGoogle Scholar
  147. Meals D, Dressing S, Davenport T (2010) Lag time in water quality response to best management practices: a review. J Environ Qual 39:85–96CrossRefPubMedPubMedCentralGoogle Scholar
  148. Meng F, Huang J, Liu H et al (2015) Remedial effects of Potamogeton crispus L. on PAH-contaminated sediments. Environ Sci Pollut Res 22:7547–7556CrossRefGoogle Scholar
  149. Meuleman A, Beekman H, Verhoeven J (2002) Nutrient retention and nutrient-use efficiency in Phragmites australis stands after wasterwater application. Wetlands 22:712–721CrossRefGoogle Scholar
  150. Miretzky P, Saralegui A, Cirelli A (2004) Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere 57:997–1005CrossRefGoogle Scholar
  151. Mkandawire M, Dudel E (2005) Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci Total Environ 336:81–89CrossRefPubMedPubMedCentralGoogle Scholar
  152. Mkandawire M, Lyubun Y, Kosterin P et al (2004a) Toxicity of arsenic species to Lemna gibba L. and the influence of phosphate on arsenic bioavailability. Environ Toxicol 19:26–34CrossRefPubMedPubMedCentralGoogle Scholar
  153. Mkandawire M, Taubert B, Dudel E (2004b) Capacity of Lemna gibba L. (Duckweed) for uranium and arsenic phytoremediation in mine tailing waters. Int J Phytorem 6:347–362CrossRefGoogle Scholar
  154. Molisani M, Lacerda L (2006) Mercury contents in aquatic macrophytes from two reservoirs in the Paraíba Do Sul: guandú river system, Se Brazil. Braz J Biol 66:101–107CrossRefPubMedPubMedCentralGoogle Scholar
  155. Moore M, Locke M, Kröger R (2016) Using aquatic vegetation to remediate nitrate, ammonium, and soluble reactive phosphorus in simulated runoff. Chemosphere 160:149–154CrossRefPubMedPubMedCentralGoogle Scholar
  156. Morency D, Belnick T (1987) Control of internal phosphorus loading in two shallow lakes by alum and aquatic plant harvesting. Lake Reservoir Manage 3:31–37CrossRefGoogle Scholar
  157. Mwendera C, De Jager C, Longwe H et al (2017) Development of a framework to improve the utilisation of malaria research for policy development in Malawi. Health Res Policy Syst 15:1–10CrossRefGoogle Scholar
  158. Nesshöver C, Assmuth T, Irvine K et al (2017) The science, policy and practice of nature-based solutions: an interdisciplinary perspective. Sci Total Environ 579:1215–1227CrossRefPubMedPubMedCentralGoogle Scholar
  159. Newete S, Byrne M (2016) The capacity of aquatic macrophytes for phytoremediation and their disposal with specific reference to water hyacinth. Environ Sci Pollut Res Int 23:10630–10643CrossRefPubMedPubMedCentralGoogle Scholar
  160. Nichols P, Lucke T, Drapper D et al (2016) Performance evaluation of a floating treatment wetland in an urban catchment. Water 8:244. Scholar
  161. Ning D, Huang Y, Pan R et al (2014) Effect of eco-remediation using planted floating bed system on nutrients and heavy metals in urban river water and sediment: a field study in China. Sci Total Environ 485:596–603CrossRefPubMedPubMedCentralGoogle Scholar
  162. Nivala J, Hoos MB, Cross C et al (2007) Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland. Sci Total Environ 380:19–27CrossRefPubMedPubMedCentralGoogle Scholar
  163. Ohe T, Watanabe T, Wakabayashi K (2004) Mutagens in surface waters: a review. Mutation Res/Rev Mutation Res 567:109–149CrossRefGoogle Scholar
  164. Olguín E, Sá Nchez-Galvá G (2012) Heavy metal removal in phytofiltration and phycoremediation: the need to differentiate between bioadsorption and bioaccumulation. New Biotechnol 30:3–8CrossRefGoogle Scholar
  165. Olguín E, Sánchez-Galván G, Melo F et al (2017) Long-term assessment at field scale of floating treatment wetlands for improvement of water quality and provision of ecosystem services in a eutrophic urban pond. Sci Total Environ 584–585:561–571CrossRefPubMedPubMedCentralGoogle Scholar
  166. Oren Benaroya R, Tzin V, Tel-Or E et al (2004) Lead accumulation in the aquatic fern Azolla filiculoides. Plant Physiol Biochem 42:639–645CrossRefPubMedPubMedCentralGoogle Scholar
  167. Ormerod S, Dobson M, Hildrew A et al (2010) Multiple stressors in freshwater ecosystems. Freshw Biol 55:1–4CrossRefGoogle Scholar
  168. Osmolovskaya N, Kurilenko V (2005) Macrophytes in phytoremediation of heavy metal contaminated water and sediments in urban inland ponds. Geophys Res Abs 7:10510Google Scholar
  169. Padmavathiamma P, Li L (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126CrossRefGoogle Scholar
  170. Paisio C, Fernandez M, González P (2018) Simultaneous phytoremediation of chromium and phenol by Lemna minuta Kunth: a promising biotechnological tool. Int J Environ Sci Technol 15:37–48CrossRefGoogle Scholar
  171. Panich-pat T (2005) Electron microscopic studies on localization of lead in organs of Typha angustifolia grown on contaminated soil. ScienceAsia 31:49–53CrossRefGoogle Scholar
  172. Parzych A, Sobisz Z, Cymer M (2016) Preliminary research of heavy metals content in aquatic plants taken from surface water (Northern Poland). Desalin Water Treat 57:1451–1461CrossRefGoogle Scholar
  173. Patel S (2012) Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: an overview. Rev Environ Sci Bio/Technol 11:249–259CrossRefGoogle Scholar
  174. Patiño Gómez J, Lara-Borrero J (2012) Investment, operation and maintenance costs for natural wastewater treatment systems in small communities in Colombia. Eur Water 40:19–30Google Scholar
  175. Pavlineri N, Skoulikidis N, Tsihrintzis V (2017) Constructed floating wetlands: a review of research, design, operation and management aspects, and data meta-analysis. Chem Eng J 308:1120–1132CrossRefGoogle Scholar
  176. Peterson S, Smith W, Malueg K (1974) Full-scale harvest of aquatic plants: nutrient removal from a eutrophic lake. Source J (Water Pollut Control Fed) 46:697–707Google Scholar
  177. Phetsombat S, Kruatrachue M, Pokethitiyook P et al (2006) Toxicity and bioaccumulation of cadmium and lead in Salvinia cucullata. J Environ Biol Enterp 27:645–652Google Scholar
  178. Picard C, Fraser L, Steer D (2005) The interacting effects of temperature and plant community type on nutrient removal in wetland microcosms. Biores Technol 96:1039–1047CrossRefGoogle Scholar
  179. Polechońska L, Samecka-Cymerman A (2016) Bioaccumulation of macro-and trace elements by European frogbit (Hydrocharis morsus-ranae L.) in relation to environmental pollution. Environ Sci Pollut Res 23:3469–3480CrossRefGoogle Scholar
  180. Polomski R, Taylor M, Bielenberg D et al (2009) Nitrogen and phosphorus remediation by three floating aquatic macrophytes in greenhouse-based laboratory-scale subsurface constructed wetlands. Water Air Soil Pollut 197:223–232CrossRefGoogle Scholar
  181. Portielje R, Van der Molen D (1999) Relationships between eutrophication variables: from nutrient loading to transparency. Hydrobiologia 0:375–387Google Scholar
  182. Pratas J, Paulo C, Favas P et al (2014) Potential of aquatic plants for phytofiltration of uranium-contaminated waters in laboratory conditions. Ecol Eng 69:170–176CrossRefGoogle Scholar
  183. Qian J, Zayed A, Zhu Y et al (1999) Phytoaccumulation of trace elements by wetland plants: III. Uptake and accumulation of ten trace elements by twelve plant species. J Environ Qual 28:1448–1455CrossRefGoogle Scholar
  184. Quilliam R, van Niekerk M, Chadwick D et al (2015) Can macrophyte harvesting from eutrophic water close the loop on nutrient loss from agricultural land? J Environ Manage 152:210–217CrossRefPubMedPubMedCentralGoogle Scholar
  185. Rahman M, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83:633–646CrossRefPubMedPubMedCentralGoogle Scholar
  186. Rai P (2009) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Environ Sci Technol 39:697–753CrossRefGoogle Scholar
  187. Rai U, Tripathi R, Vajpayee P et al (2003) Cadmium accumulation and its phytotoxicity in Potamogeton pectinatus L. (Potamogetonaceae). Bull Environ Contam Toxicol 70:566–575CrossRefPubMedPubMedCentralGoogle Scholar
  188. Reinhold D, Vishwanathan S, Park J et al (2010) Assessment of plant-driven removal of emerging organic pollutants by duckweed. Chemosphere 80:687–692CrossRefPubMedPubMedCentralGoogle Scholar
  189. Reinoso R, Torres L, Bécares E (2008) Efficiency of natural systems for removal of bacteria and pathogenic parasites from wastewater. Sci Total Environ 395:80–86CrossRefPubMedPubMedCentralGoogle Scholar
  190. Rezania S, Taib S, Fadhil M et al (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587–599CrossRefPubMedPubMedCentralGoogle Scholar
  191. Rockström J, Falkenmark M, Allan T et al (2014) The unfolding water drama in the Anthropocene: towards a resilience-based perspective on water for global sustainability. Ecohydrology 7:1249–1261Google Scholar
  192. Rodríguez M, Brisson J, Rueda G et al (2012) Water quality improvement of a reservoir invaded by an exotic macrophyte. Invasive Plant Sci Manage 5:290–299CrossRefGoogle Scholar
  193. Rosenkranz T, Kisser J, Wenzel W et al (2017) Waste or substrate for metal hyperaccumulating plants—the potential of phytomining on waste incineration bottom ash. Sci Total Environ 575:910–918CrossRefPubMedPubMedCentralGoogle Scholar
  194. Saeed T, Paul B, Afrin R et al (2016) Floating constructed wetland for the treatment of polluted river water: a pilot scale study on seasonal variation and shock load. Chem Eng J 287:62–73CrossRefGoogle Scholar
  195. Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138CrossRefGoogle Scholar
  196. Sayer C, Davidson T, Jones J (2010) Seasonal dynamics of macrophytes and phytoplankton in shallow lakes: a eutrophication-driven pathway from plants to plankton? Freshw Biol 55:500–513CrossRefGoogle Scholar
  197. Scholes L, Shutes R, Revitt D et al (1999) The removal of urban pollutants by constructed wetlands during wet weather. Water Sci Technol 40:333–340CrossRefGoogle Scholar
  198. Schultz R, Dibble E (2012) Effects of invasive macrophytes on freshwater fish and macroinvertebrate communities: the role of invasive plant traits. Hydrobiologia 684(1):1–14. Scholar
  199. Sheoran V, Sheoran A, Poonia P (2009) Phytomining: a review. Miner Eng 22:1007–1019CrossRefGoogle Scholar
  200. Singh N, Pandey G, Rai U et al (2005) Metal accumulation and ecophysiological effects of distillery effluent on Potamogeton pectinatus L. Bull Environ Contam Toxicol 74:857–863CrossRefPubMedPubMedCentralGoogle Scholar
  201. Sivaci E, Sivaci A, Sokman M (2004) Biosorption of cadmium by Myriophyllum spicatum and Myriophyllum triphyllum orchard. Chemosphere 56:1043–1048CrossRefPubMedPubMedCentralGoogle Scholar
  202. Smart R, Dick G, Doyle A (1998) Techniques for establishing native aquatic plants. J Aquat Plant Manage 36:44–49Google Scholar
  203. Song U, Park H (2017) Importance of biomass management acts and policies after phytoremediation. J Ecol Environ 41:1–6CrossRefGoogle Scholar
  204. Song H, Nakano K, Taniguchi T et al (2009) Estrogen removal from treated municipal effluent in small-scale constructed wetland with different depth. Biores Technol 100:2945–2951CrossRefGoogle Scholar
  205. Souza F, Dziedzic M, Cubas S et al (2013) Restoration of polluted waters by phytoremediation using Myriophyllum aquaticum (Vell.) Verdc., Haloragaceae. J Environ Manage 120:5–9CrossRefPubMedPubMedCentralGoogle Scholar
  206. Srivastava S, Shrivastava M, Suprasanna P et al (2011) Phytofiltration of arsenic from simulated contaminated water using Hydrilla verticillata in field conditions. Ecol Eng 37:1937–1941CrossRefGoogle Scholar
  207. Stottmeister U, Wießner A, Kuschk P et al (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117CrossRefPubMedPubMedCentralGoogle Scholar
  208. Sun L, Liu Y, Jin H (2009) Nitrogen removal from polluted river by enhanced floating bed grown canna. Ecol Eng 35:135–140CrossRefGoogle Scholar
  209. Sundaravadivel M, Vigneswaran S (2001) Constructed wetlands for wastewater treatment. Crital Rev Environ Sci Technol. Scholar
  210. Sunita S, Bikram Singh V (2015) Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res 22:946–962CrossRefGoogle Scholar
  211. Taghi M, Khosravi M, Rakhshaee R (2005) Biosorption of Pb, Cd, Cu and Zn from the wastewater by treated Azolla filiculoides with H2O2/MgCl2. Int J Environ Sci Technol 1:265–271CrossRefGoogle Scholar
  212. Tanaka T, Irbis C, Kumagai H et al (2017) Effect of Phragmites japonicus harvest frequency and timing on dry matter yield and nutritive value. J Environ Manage 187:436–443CrossRefPubMedPubMedCentralGoogle Scholar
  213. Tanner C (1996) Plants for constructed wetland treatment systems—a comparison of the growth and nutrient uptake of eight emergent species. Ecol Eng 7:59–83CrossRefGoogle Scholar
  214. Tanner C, Headley T (2011) Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecol Eng 37:474–486CrossRefGoogle Scholar
  215. The Great Britain Non-native Species Secretariat (2015) The Great Britain invasive non-native species strategy. Available at: Accessed: 3 Mar 2018
  216. Thijs S, Sillen RF et al (2016) Towards an enhanced understanding of plant-microbiome interactions to improve phytoremediation: engineering the metaorganism. Front Microbiol. Scholar
  217. Tilley E, Ulrich L, Luthi C et al (2014) Compendium of sanitation systems and technologies, 2nd revised edn. Available at: Accessed: 12 Dec 2016
  218. Tilman D, Balzer C, Hill J et al (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108:20260–20264 (National Academy of Sciences)Google Scholar
  219. Tran V, Ngo H, Guo W et al (2015) Typical low cost biosorbents for adsorptive removal of specific organic pollutants from water. Biores Technol 182:353–363CrossRefGoogle Scholar
  220. Tront J, Saunders F (2006) Role of plant activity and contaminant speciation in aquatic plant assimilation of 2,4,5-trichlorophenol. Chemosphere 64:400–407CrossRefPubMedPubMedCentralGoogle Scholar
  221. Truu M, Juhanson J, Truu J (2009) Microbial biomass, activity and community composition in constructed wetlands. Sci Total Environ 407:3958–3971CrossRefPubMedPubMedCentralGoogle Scholar
  222. Turgut C (2005) Uptake and modeling of pesticides by roots and shoots of parrotfeather (Myriophyllum aquaticum). Environ Sci Pollut Res 12:342–346CrossRefGoogle Scholar
  223. Türker O, Türe C, Böcük H et al (2016) Phyto-management of boron mine effluent using native macrophytes in mono-culture and poly-culture constructed wetlands. Ecol Eng 94:65–74CrossRefGoogle Scholar
  224. Tyler H, Moore M, Locke M (2012) Potential for phosphate mitigation from agricultural runoff by three aquatic macrophytes. Water Air Soil Pollut 223:4557–4564CrossRefGoogle Scholar
  225. Ulén B, Bechmann M, Fölster J et al (2007) Agriculture as a phosphorus source for eutrophication in the north-west European countries, Norway, Sweden, United Kingdom and Ireland: a review. Soil Use Manage 23:5–15CrossRefGoogle Scholar
  226. Valipour A, Ahn Y (2016) Constructed wetlands as sustainable ecotechnologies in decentralization practices: a review. Environ Sci Pollut Res 23:180–197CrossRefGoogle Scholar
  227. Van de Moortel A, Du Laing G et al (2011) Distribution and mobilization of pollutants in the sediment of a constructed floating wetland used for treatment of combined sewer overflow events. Water Environ Res 83:427–439CrossRefPubMedPubMedCentralGoogle Scholar
  228. Van der Ent A, Baker A, Reeves R et al (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334CrossRefGoogle Scholar
  229. Van der Perk M (2006) Soil and water contamination from molecular to catchment scale. Taylor & Francis Group, LondonCrossRefGoogle Scholar
  230. Verkleij J, Golan-Goldhirsh A, Antosiewisz D et al (2009) Dualities in plant tolerance to pollutants and their uptake and translocation to the upper plant parts. Environ Exp Bot 67:10–22CrossRefGoogle Scholar
  231. Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65CrossRefPubMedPubMedCentralGoogle Scholar
  232. Vymazal J (2009) The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecol Eng 35:1–17CrossRefGoogle Scholar
  233. Vymazal J (2011) Constructed wetlands for wastewater treatment: five decades of experience. Environ Sci Technol 45:61–69CrossRefPubMedPubMedCentralGoogle Scholar
  234. Vymazal J (2016) Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants. Sci Total Environ 544:495–498CrossRefPubMedPubMedCentralGoogle Scholar
  235. Vymazal J, Kröpfelová L (2009) Removal of organics in constructed wetlands with horizontal sub-surface flow: a review of the field experience. Sci Total Environ 407:3911–3922CrossRefPubMedPubMedCentralGoogle Scholar
  236. Wand H, Vacca G, Kuschk P et al (2006) Removal of bacteria by filtration in planted and non-planted sand columns. Water Res 41:159–167CrossRefPubMedPubMedCentralGoogle Scholar
  237. Wang C, Sample D (2014) Assessment of the nutrient removal effectiveness of floating treatment wetlands applied to urban retention ponds. J Environ Manage 137:23–35CrossRefPubMedPubMedCentralGoogle Scholar
  238. Wang T, Weissman J, Ramesh G et al (1996) Parameters for removal of toxic heavy metals by water Milfoil (Myriophyllum spicatum). Bull Environ Contam Toxicol 57:779–786CrossRefPubMedPubMedCentralGoogle Scholar
  239. Wang G, Zhang L, Chua H et al (2009) A mosaic community of macrophytes for the ecological remediation of eutrophic shallow lakes. Ecol Eng 35:582–590CrossRefGoogle Scholar
  240. Wang C, Sample D, Bell C (2014) Vegetation effects on floating treatment wetland nutrient removal and harvesting strategies in urban stormwater ponds. Sci Total Environ 499:384–393CrossRefPubMedPubMedCentralGoogle Scholar
  241. Wang C, Sample D, Day S (2015) Floating treatment wetland nutrient removal through vegetation harvest and observations from a field study. Ecol Eng 78:15–26CrossRefGoogle Scholar
  242. Windham L, Weis J, Weis P (2003) Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuar Coast Shelf Sci 56:63–72CrossRefGoogle Scholar
  243. Xia H, Ma X (2006) Phytoremediation of ethion by water hyacinth (Eichhornia crassipes) from water. Biores Technol 97:1050–1054CrossRefGoogle Scholar
  244. Xian Q, Hu L, Chen H et al (2010) Removal of nutrients and veterinary antibiotics from swine wastewater by a constructed macrophyte floating bed system. J Environ Manage 91:2657–2661CrossRefPubMedPubMedCentralGoogle Scholar
  245. Xiao J, Chu S, Tian G et al (2016) An eco-tank system containing microbes and different aquatic plant species for the bioremediation of N,N-dimethylformamide polluted river waters. J Hazard Mater 320:564–570CrossRefPubMedPubMedCentralGoogle Scholar
  246. Xing W, Wu H, Hao B et al (2013) Metal accumulation by submerged macrophytes in eutrophic lakes at the watershed scale. Environ Sci Pollut Res 20:6999–7008CrossRefGoogle Scholar
  247. Xu Z, Yin X, Yang Z (2014) An optimisation approach for shallow lake restoration through macrophyte management. Hydrol Earth Syst Sci 18:2167–2176CrossRefGoogle Scholar
  248. Yamazaki K, Tsuruta H, Inui H (2015) Different uptake pathways between hydrophilic and hydrophobic compounds in lateral roots of Cucurbita pepo. J Pestic Sci 40:99–105CrossRefGoogle Scholar
  249. Yan S, Song W, Guo J (2017) Critical reviews in biotechnology advances in management and utilization of invasive water hyacinth (Eichhornia crassipes) in aquatic ecosystems—a review. Crit Rev Biotechnol 37:218–228CrossRefPubMedPubMedCentralGoogle Scholar
  250. Yang B, Lan C, Yang C et al (2006) Long-term efficiency and stability of wetlands for treating wastewater of a lead/zinc mine and the concurrent ecosystem development. Environ Pollut 143:499–512CrossRefPubMedPubMedCentralGoogle Scholar
  251. Yang Z, Zheng S, Chen J et al (2008) Purification of nitrate-rich agricultural runoff by a hydroponic system. Biores Technol 99:8049–8053CrossRefGoogle Scholar
  252. Ye Z, Baker A, Wong M et al (1997) Zinc, lead and cadmium tolerance, uptake and accumulation by Typha latifolia. New Phytol 136:469–480CrossRefGoogle Scholar
  253. Yeh N, Yeh P, Chang Y (2015) Artificial floating islands for environmental improvement. Renew Sustain Energy Rev 47:616–622CrossRefGoogle Scholar
  254. Zarate F, Schulwitz S, Stevens K et al (2012) Bioconcentration of triclosan, methyl-triclosan, and triclocarban in the plants and sediments of a constructed wetland. Chemosphere 88:323–329CrossRefPubMedPubMedCentralGoogle Scholar
  255. Zayed A, Gowthaman S, Terry N (1998) Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J Environ Qual 27:715–721CrossRefGoogle Scholar
  256. Zayed A, Pilon-Smits E, de Souza M et al (2000) Remediation of selenium polluted soils and waters by phytovolatilization. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca RatonGoogle Scholar
  257. Zhang Z, Rengel Z, Meney K (2007) Nutrient removal from simulated wastewater using Canna indica and Schoenoplectus validus in mono- and mixed-culture in wetland microcosms. Water Air Soil Pollut 183:95–105CrossRefGoogle Scholar
  258. Zhang D, Tan S, Gersberg R et al (2011a) Removal of pharmaceutical compounds in tropical constructed wetlands. Ecol Eng 37:460–464Google Scholar
  259. Zhang X, Hu Y, Liu Y et al (2011b) Arsenic uptake, accumulation and phytofiltration by duckweed (Spirodela polyrhiza L.). J Environ Sci 23:601–606Google Scholar
  260. Zhang D, Hua T, Gersberg R et al (2012) Fate of diclofenac in wetland mesocosms planted with Scirpus validus. Ecol Eng 49:59–64CrossRefGoogle Scholar
  261. Zhang D, Hua T, Gersberg R et al (2013a) Carbamazepine and naproxen: fate in wetland mesocosms planted with Scirpus validus. Chemosphere 91:14–21CrossRefPubMedPubMedCentralGoogle Scholar
  262. Zhang D, Hua T, Gersberg R, Zhu J et al (2013b) Fate of caffeine in mesocosms wetland planted with Scirpus validus. Chemosphere 90:1568–1572CrossRefPubMedPubMedCentralGoogle Scholar
  263. Zhang C, Liu W, Pan X et al (2014a) Comparison of effects of plant and biofilm bacterial community parameters on removal performances of pollutants in floating island systems. Ecol Eng 73:58–63CrossRefGoogle Scholar
  264. Zhang D, Gersberg R, Wun N et al (2014b) Removal of pharmaceuticals and personal care products in aquatic plant-based systems: a review. Environ Pollut 184:620–639CrossRefPubMedPubMedCentralGoogle Scholar
  265. Zhao F, Xi S, Yang X et al (2011) Purifying eutrophic river waters with integrated floating island systems. Ecol Eng 40:53–60CrossRefGoogle Scholar
  266. Zhao F, Yang W, Zeng Z et al (2012) Nutrient removal efficiency and biomass production of different bioenergy plants in hypereutrophic water. Biomass Bioenergy 42:212–218CrossRefGoogle Scholar
  267. Zhou X, Wang G (2010) Nutrient concentration variations during Oenanthe javanica growth and decay in the ecological floating bed system. J Environ Sci 22:1710–1717CrossRefGoogle Scholar
  268. Zhu Y, Zayed A, Qia J et al (1999) Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J Environ Qual 28:339–344CrossRefGoogle Scholar
  269. Zhu L, Li Z, Ketola T (2011) Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China’s rural area. Ecol Eng 37:1460–1466CrossRefGoogle Scholar
  270. Zhu J, Hu W, Hu L et al (2012) Variation in the efficiency of nutrient removal in a pilot-scale natural wetland. Wetlands 32:11–319CrossRefGoogle Scholar
  271. Zimmerman J, Mihelcic J, Smith J (2008) Global stressors on water quality and quantity. Environ Sci Technol 42:4247–4254CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jonathan Fletcher
    • 1
    Email author
  • Nigel Willby
    • 1
  • David M. Oliver
    • 1
  • Richard S. Quilliam
    • 1
  1. 1.Biological and Environmental Sciences, Faculty of Natural SciencesUniversity of StirlingStirlingUK

Personalised recommendations