Advertisement

In Situ Phytoremediation of Metals

  • Mumtaz Khan
  • Salma Shaheen
  • Shafaqat AliEmail author
  • Zhang Yi
  • Li Cheng
  • Samrana
  • Muhammad Daud Khan
  • Muhammad Azam
  • Muhammad Rizwan
  • Muhammad Afzal
  • Ghazala Irum
  • Muhammad Jamil Khan
  • Zhu Shuijin
Chapter
  • 22 Downloads
Part of the Concepts and Strategies in Plant Sciences book series (CSPS)

Abstract

Metals are ubiquitous for life sustenance on earth, but their tremendous accumulation in ecosystems has caused contamination of soil and water resources. “Ex situ” and “in situ” are two possible remediating options. Ex situ remediation involves excavation of polluted soil followed by treatment, rendering it an expensive cleanup method. In situ phytoremediation is the onsite contaminant removal through plant uptake in a cost-effective and eco-friendly way. Phytoextraction and phytostabilization are two commonly practiced in situ phytoremediation strategies. This chapter focuses on basic concepts of in situ phytoremediation and removal of toxic heavy metals from soil–water environment.

Keywords

Asteraceae Brassicaceae Crassulaceae Heavy metals Hyperaccumulation Lamiaceae phytoremediation Phytostabilization Phytoextraction Soil–water environment 

References

  1. Abou-Shanab R, Angle J, Delorme T, Chaney R, Van Berkum P, Moawad H, Ghanem K, Ghozlan H (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158(1):219–224CrossRefGoogle Scholar
  2. Ahmad R, Ali S, Ibrahim M, Rizwan M, Hannan F, Adrees M, Khan MD (2016) Silicon and chromium toxicity in plants: an overview. In: Tripathi DK et al (eds) Silicon in Plants. CRC Press Book, pp 213–226Google Scholar
  3. Alkorta I, Hernández-Allica J, Garbisu C (2004) Plants against the global epidemic of arsenic poisoning. Environ Int 30(7):949–951.  https://doi.org/10.1016/j.envint.2004.04.002CrossRefPubMedGoogle Scholar
  4. Alvarado S, Guédez M, Lué-Merú MP, Nelson G, Alvaro A, Jesús AC, Gyula Z (2008) Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor). Bioresour Technol 99(17):8436–8440.  https://doi.org/10.1016/j.biortech.2008.02.051CrossRefPubMedGoogle Scholar
  5. Bani A, Echevarria G, Sulçe S, Morel JL, Mullai A (2007) In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant Soil 293(1–2):79–89CrossRefGoogle Scholar
  6. Bañuelos GS, Ajwa HA, Wu L, Zambrzuski S (1998) Selenium accumulation by Brassica Napus grown in se-laden soil from different depths of Kesterson reservoir. J Soil Contam 7(4):481–496.  https://doi.org/10.1080/10588339891334393CrossRefGoogle Scholar
  7. Bañuelos GS, Zambrzuski S, Mackey B (2000) Phytoextraction of selenium from soils irrigated with selenium-laden effluent. Plant Soil 224(2):251–258.  https://doi.org/10.1023/a:1004881803469CrossRefGoogle Scholar
  8. Bañuelos G, Terry N, LeDuc DL, Pilon-Smits EAH, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol 39(6):1771–1777.  https://doi.org/10.1021/es049035fCrossRefPubMedGoogle Scholar
  9. Bhat IU, Mauris EN, Khanam Z (2016) Phytoremediation of iron from red soil of tropical region by using Centella asiatica. Int J Phytorem 18(9):918–923Google Scholar
  10. Blaustein R (2017) Phytoremediation of lead: what works what doesn’t. Bioscience 67(9):868.  https://doi.org/10.1093/biosci/bix089CrossRefGoogle Scholar
  11. Boyd RS, Shaw JJ, Martens SN (1994) Nickel hyperaccumulation defends Streptanthus polygaloides (Brassicaceae) against pathogens. Am J Bot 294–300Google Scholar
  12. Braeuer S, Goessler W, Kameník J, Konvalinková T, Žigová A, Borovička J (2018) Arsenic hyperaccumulation and speciation in the edible ink stain bolete (Cyanoboletus pulverulentus). Food Chem 242(Supplement C):225–231. https://doi.org/10.1016/j.foodchem.2017.09.038
  13. Burken JG, Schnoor JL (1997) Uptake and metabolism of atrazine by poplar trees. Environ Sci Technol 31(5):1399–1406.  https://doi.org/10.1021/es960629vCrossRefGoogle Scholar
  14. Chandra R, Kumar V (2017) Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilised distillery sludge as a prospective tool for in situ phytoremediation of industrial waste. Environ Sci Pollut Res 24(3):2605–2619.  https://doi.org/10.1007/s11356-016-8022-1CrossRefGoogle Scholar
  15. Chen H, Cutright T (2001) EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere 45(1):21–28.  https://doi.org/10.1016/S0045-6535(01)00031-5CrossRefPubMedGoogle Scholar
  16. Chigbo C, Batty L (2014) Phytoremediation for co-contaminated soils of chromium and benzo[a]pyrene using Zea mays L. Environ Sci Pollut Res 21(4):3051–3059.  https://doi.org/10.1007/s11356-013-2254-0CrossRefGoogle Scholar
  17. Davis MA, Boyd RS (2000) Dynamics of Ni-based defence and organic defences in the Ni hyperaccumulator, Streptanthus polygaloides (Brassicaceae). New Phytol 146(2):211–217CrossRefGoogle Scholar
  18. Dheri GS, Brar MS, Malhi SS (2007) Comparative phytoremediation of chromium-contaminated soils by fenugreek, spinach, and raya. Commun Soil Sci Plant Anal 38(11–12):1655–1672.  https://doi.org/10.1080/00103620701380488CrossRefGoogle Scholar
  19. Dhillon SK, Dhillon KS (2009) Phytoremediation of selenium-contaminated soils: the efficiency of different cropping systems. Soil Use Manag 25(4):441–453. https://doi.org/10.1111/j.1475-2743.2009.00217.x
  20. Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32(12):1682–1694.  https://doi.org/10.1111/j.1365-3040.2009.02028.xCrossRefPubMedGoogle Scholar
  21. Ebbs S, Kochian L (1997) Toxicity of zinc and copper to brassica species: implications for phytoremediation. J Environ Qual 26(3):776–781.  https://doi.org/10.2134/jeq1997.00472425002600030026xCrossRefGoogle Scholar
  22. Farid M, Ali S, Rizwan M, Ali Q, Abbas F, Bukhari S, Saeed R, Wu L (2017) Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. 145:90–102. https://doi.org/10.1016/j.ecoenv.2017.07.016
  23. Franchi E, Rolli E, Marasco R, Agazzi G, Borin S, Cosmina P, Pedron F, Rosellini I, Barbafieri M, Petruzzelli G (2017) Phytoremediation of a multi contaminated soil: mercury and arsenic phytoextraction assisted by mobilizing agent and plant growth promoting bacteria. J Soils Sediments 17(5):1224–1236.  https://doi.org/10.1007/s11368-015-1346-5CrossRefGoogle Scholar
  24. Gao J, Garrison AW, Hoehamer C, Mazur CS, Wolfe NL (2000) Uptake and phytotransformation of organophosphorus pesticides by axenically cultivated aquatic plants. J Agric Food Chem 48(12):6114–6120.  https://doi.org/10.1021/jf9904968CrossRefPubMedGoogle Scholar
  25. Heaton ACP, Rugh CL, Wang N-J, Meagher RB (1998) Phytoremediation of mercury- and methylmercury-polluted soils using genetically engineered plants. J Soil Contam 7(4):497–509.  https://doi.org/10.1080/10588339891334384CrossRefGoogle Scholar
  26. Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31(3):800–805.  https://doi.org/10.1021/es9604828CrossRefGoogle Scholar
  27. Itanna F, Coulman B (2003) Phytoextraction of copper, iron, manganese, and zinc from environmentally contaminated sites in Ethiopia, with three grass species. Commun Soil Sci Plant Anal 34(1–2):111–124.  https://doi.org/10.1081/CSS-120017419CrossRefGoogle Scholar
  28. Javaid DA (2011) Importance of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. In: Khan MS, Zaidi A, Goel R, Mussarat J (eds) Biomanagement of metal-contaminated soils, environmental pollution, vol 20. Springer, Dordrecht https://doi.org/10.1007/978-94-007-1914-9_5
  29. Kambhampati MS, Vu VT (2013) EDTA enhanced phytoremediation of copper contaminated soils using chickpea (Cicer aeritinum L.). Bull Environ Contam Toxicol 91(3):310–313. https://doi.org/10.1007/s00128-013-1072-x
  30. Kassel AG, Ghoshal D, Goyal A (2002) Phytoremediation of trichloroethylene using hybrid poplar. Physiol Mol Biol Plants 8:3–10Google Scholar
  31. King DJ, Doronila AI, Feenstra C, Baker AJM, Woodrow IE (2008) Phytostabilisation of arsenical gold mine tailings using four Eucalyptus species: growth, arsenic uptake and availability after five years. Sci Total Environ 406(1):35–42.  https://doi.org/10.1016/j.scitotenv.2008.07.054CrossRefPubMedGoogle Scholar
  32. Koopmans GF, Römkens PFAM, Fokkema MJ, Song J, Luo YM, Japenga J, Zhao FJ (2008) Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Environ Pollut 156(3):905–914.  https://doi.org/10.1016/j.envpol.2008.05.029CrossRefPubMedGoogle Scholar
  33. Kozhevnikova AD, Seregin IV, Verweij R, Schat H (2014) Histidine promotes the loading of nickel and zinc, but not of cadmium, into the xylem in Noccaea caerulescens. Plant Signal Behav 9:e29580.  https://doi.org/10.4161/psb.29580CrossRefPubMedPubMedCentralGoogle Scholar
  34. Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61(1):517–534.  https://doi.org/10.1146/annurev-arplant-042809-112156CrossRefPubMedGoogle Scholar
  35. Kubota H, Sugawara R, Kitajima N, Yajima S, Tani S (2010) Cadmium phytoremediation by Arabidopsis halleri ssp. gemmifera. Nihon Dojo Hiryogaku Zasshi 81(2):118–124Google Scholar
  36. Kumar D, Tripathi D, Chauhan D (2014) Phytoremediation potential and nutrient status of Barringtonia acutangula Gaerth. Tree seedlings grown under different chromium (CrVI) treatments. Biol Trace Elem Res 157(2):164–174. https://doi.org/10.1007/s12011-013-9878-2
  37. Lange B, van der Ent A, Baker AJM, Echevarria G, Mahy G, Malaisse F, Meerts P, Pourret O, Verbruggen N, Faucon M-P (2017) Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytol 213(2):537–551.  https://doi.org/10.1111/nph.14175CrossRefPubMedGoogle Scholar
  38. Li X, Bond PL, Van Nostrand JD, Zhou J, Huang L (2015) From lithotroph- to organotroph-dominant: directional shift of microbial community in sulphidic tailings during phytostabilization. Sci Rep 5:12978. https://doi.org/10.1038/srep12978; https://dharmasastra.live.cf.private.springer.com/articles/srep12978#supplementary-information
  39. Li X, Zhang X, Yang Y, Li B, Wu Y, Sun H, Yang Y (2016) Cadmium accumulation characteristics in turnip landraces from china and assessment of their phytoremediation potential for contaminated soils. Front Plant Sci 7(1862). https://doi.org/10.3389/fpls.2016.01862
  40. Linacre NA, Whiting SN, Angle JS (2005) The impact of uncertainty on phytoremediation project costs. Int J Phytorem 7(4):259–269.  https://doi.org/10.1080/16226510500327103CrossRefGoogle Scholar
  41. Lotfy SM, Mostafa AZ (2014) Phytoremediation of contaminated soil with cobalt and chromium. J Geochem Explor 144(Part B):367–373. https://doi.org/10.1016/j.gexplo.2013.07.003
  42. MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers (nobel lecture). Angew Chem Int Ed Engl 40(14):2581–2590.  https://doi.org/10.1002/1521-3773(20010716)40:14%3c2581:AID-ANIE2581%3e3.0.CO;2-2CrossRefPubMedGoogle Scholar
  43. Magdziak Z, Gąsecka M, Goliński P, Mleczek M (2015) Phytoremediation and environmental factors. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: management of environmental contaminants, vol 1. Springer, Cham, pp 45–55. https://doi.org/10.1007/978-3-319-10395-2_4
  44. Malik M, Chaney RL, Brewer EP, Li Y-M, Angle JS (2000) Phytoextraction of soil cobalt using hyperaccumulator plants. Int J Phytorem 2(4):319–329.  https://doi.org/10.1080/15226510008500041CrossRefGoogle Scholar
  45. Marrugo-Negrete J, Durango-Hernández J, Pinedo-Hernández J, Olivero-Verbel J, Díez S (2015) Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere 127(Supplement C):58–63. https://doi.org/10.1016/j.chemosphere.2014.12.073
  46. Marrugo-Negrete J, Marrugo-Madrid S, Pinedo-Hernández J, Durango-Hernández J, Díez S (2016) Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Sci Total Environ 542(Part A):809–816. https://doi.org/10.1016/j.scitotenv.2015.10.117
  47. Mendez MO, Maier RM (2008a) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Biotechnol 7(1):47–59.  https://doi.org/10.1007/s11157-007-9125-4CrossRefGoogle Scholar
  48. Mendez MO, Maier RM (2008b) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116(3):278–283.  https://doi.org/10.1289/ehp.10608CrossRefPubMedGoogle Scholar
  49. Mesjasz-Przybylowicz J, Przybylowicz W, Barnabas A, van der Ent A (2016) Extreme nickel hyperaccumulation in the vascular tracts of the tree Phyllanthus balgooyi from Borneo. New Phytol 209(4):1513–1526.  https://doi.org/10.1111/nph.13712CrossRefPubMedGoogle Scholar
  50. Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29(6):645–653.  https://doi.org/10.1016/j.biotechadv.2011.04.006CrossRefPubMedGoogle Scholar
  51. Natarajan S, Stamps RH, Ma LQ, Saha UK, Hernandez D, Cai Y, Zillioux EJ (2011) Phytoremediation of arsenic-contaminated groundwater using arsenic hyperaccumulator Pteris vittata L.: effects of frond harvesting regimes and arsenic levels in refill water. J Hazard Mater 185(2):983–989. https://doi.org/10.1016/j.jhazmat.2010.10.002
  52. Nayak AK, Jena RC, Jena S, Bhol R, Patra HK (2015) Phytoremediation of hexavalent chromium by Triticum aestivum L. Sci For 9(1):16–22Google Scholar
  53. Nehnevajova E, Herzig R, Federer G, Erismann K-H, Schwitzguébel J-P (2005) Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis. Int J Phytorem 7(4):337–349.  https://doi.org/10.1080/16226510500327210CrossRefGoogle Scholar
  54. Nematian MA, Kazemeini F (2013) Accumulation of Pb, Zn, Cu and Fe in plants and hyperaccumulator choice in Galali iron mine area, Iran. Int J Agric Crop Sci 5(4):426–432Google Scholar
  55. Purakayastha T, Viswanath T, Bhadraray S, Chhonkar PK, Adhikary PP, Suribabu K (2008) Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of brassica. Int J Phytorem 10(1):61–72.  https://doi.org/10.1080/15226510701827077CrossRefGoogle Scholar
  56. Rahman MA, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83(5):633–646.  https://doi.org/10.1016/j.chemosphere.2011.02.045CrossRefPubMedGoogle Scholar
  57. Rahman MM, Azirun SM, Boyce AN (2013) Enhanced accumulation of copper and lead in amaranth (Amaranthus paniculatus), Indian mustard (Brassica juncea) and sunflower (Helianthus annuus). PLoS ONE 8(5):e62941.  https://doi.org/10.1371/journal.pone.0062941CrossRefPubMedPubMedCentralGoogle Scholar
  58. Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574.  https://doi.org/10.1016/j.biotechadv.2012.04.011CrossRefPubMedGoogle Scholar
  59. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181.  https://doi.org/10.1016/j.plantsci.2010.08.016CrossRefPubMedGoogle Scholar
  60. Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8(2):221–226.  https://doi.org/10.1016/S0958-1669(97)80106-1CrossRefPubMedGoogle Scholar
  61. Rasmussen SC (2016) On the origin of ‘synthetic metals’. Mater Today 19(5):244–245.  https://doi.org/10.1016/j.mattod.2016.03.001CrossRefGoogle Scholar
  62. Revathi K, Haribabu TE, Sudha PN (2011) Phytoremediation of chromium contaminated soil using sorghum plant. Int J Environ Sci 2(2):429–440Google Scholar
  63. Robinson B, Chiarucci A, Brooks R, Petit D, Kirkman J-H, Gregg P, De Dominicis V (1997) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59(2):75–86CrossRefGoogle Scholar
  64. Roccotiello E, Serrano HC, Mariotti MG, Branquinho C (2015) Nickel phytoremediation potential of the Mediterranean Alyssoides utriculata (L.) Medik. Chemosphere 119:1372–1378CrossRefGoogle Scholar
  65. Rodriguez L, Lopez-Bellido FJ, Carnicer A, Recreo F, Tallos A, Monteagudo JM (2005) Mercury recovery from soils by phytoremediation. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Environmental chemistry: green chemistry and pollutants in ecosystems. Springer, Berlin, pp 197–204. https://doi.org/10.1007/3-540-26531-7_18
  66. Salinas MZ, Villavicencio MB, Bustillos LGT, Aragón AG (2012) Assessment of in situ and ex situ phytorestoration with grass mixtures in soils polluted with nickel, copper, and arsenic. Phys Chem Earth 37–39:52–57CrossRefGoogle Scholar
  67. Santana BVN, de Araújo TO, Andrade GC, de Freitas-Silva L, Kuki KN, Pereira EG, Azevedo AA, da Silva LC (2014) Leaf morphoanatomy of species tolerant to excess iron and evaluation of their phytoextraction potential. Environ Sci Pollut Res 21(4):2550–2562.  https://doi.org/10.1007/s11356-013-2160-5CrossRefGoogle Scholar
  68. Santibáñez C, Verdugo C, Ginocchio R (2008) Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. Sci Total Environ 395(1):1–10.  https://doi.org/10.1016/j.scitotenv.2007.12.033CrossRefPubMedGoogle Scholar
  69. Selamat SN, Abdullah SRS, Idris M (2014) Phytoremediation of lead (Pb) and arsenic (As) by Melastoma malabathricum L. from contaminated soil in separate exposure. Int J Phytorem 16(7–8):694–703. https://doi.org/10.1080/15226514.2013.856843
  70. Sheoran V, Sheoran AS, Poonia P (2009) Phytomining: a review. Miner Eng 22(12):1007–1019.  https://doi.org/10.1016/j.mineng.2009.04.001CrossRefGoogle Scholar
  71. Sheoran V, Sheoran AS, Poonia P (2013) Phytomining of gold: a review. J Geochem Explor 128(Supplement C):42–50. https://doi.org/10.1016/j.gexplo.2013.01.008
  72. Sun Y-B, Zhou Q-X, An J, Liu W-T, Liu R (2009) Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance). Geoderma 150(1):106–112.  https://doi.org/10.1016/j.geoderma.2009.01.016CrossRefGoogle Scholar
  73. Vamerali T, Bandiera M, Mosca G (2011) In situ phytoremediation of arsenic- and metal-polluted pyrite waste with field crops: effects of soil management. Chemosphere 83(9):1241–1248.  https://doi.org/10.1016/j.chemosphere.2011.03.013CrossRefPubMedGoogle Scholar
  74. van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362(1):319–334.  https://doi.org/10.1007/s11104-012-1287-3CrossRefGoogle Scholar
  75. van der Ent A, Callahan DL, Noller BN, Mesjasz-Przybylowicz J, Przybylowicz WJ, Barnabas A, Harris HH (2017) Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia). Sci Rep 7:41861. https://doi.org/10.1038/srep41861; https://www.nature.com/articles/srep41861#supplementary-information
  76. Vetter J (2004) Arsenic content of some edible mushroom species. J Environ Sci Health C Environ Carcinog Exotoxicol Rev 34(4):217–232.  https://doi.org/10.1007/s00217-004-0905-6CrossRefGoogle Scholar
  77. Vogel-Mikuš K, Pongrac P, Kump P, Nečemer M, Regvar M (2006) Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139(2):362–371.  https://doi.org/10.1016/j.envpol.2005.05.005CrossRefPubMedGoogle Scholar
  78. Wan X, Lei M, Yang J (2017) Two potential multi-metal hyperaccumulators found in four mining sites in Hunan Province, China. Catena 148(Part 1):67–73. https://doi.org/10.1016/j.catena.2016.02.005
  79. Wang H-Q, Lu S-J, Li H, Yao Z-H (2007) EDTA-enhanced phytoremediation of lead contaminated soil by Bidens maximowicziana. J Environ Sci 19(12):1496–1499. https://doi.org/10.1016/S1001-0742(07)60243-5
  80. Wu Z, Bañuelos GS, Yin X, Lin Z, Terry N, Liu Y, Yuan L, Li M (2015) Phytoremediation of the metalloid selenium in soil and water. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: management of environmental contaminants, vol 2. Springer International Publishing, Cham, pp 171–175. https://doi.org/10.1007/978-3-319-10969-5_13
  81. Ye W-L, Khan MA, McGrath SP, Zhao F-J (2011) Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Environ Pollut 159(12):3739–3743.  https://doi.org/10.1016/j.envpol.2011.07.024CrossRefPubMedGoogle Scholar
  82. Yongpisanphop J, Babel S, Kruatrachue M, Pokethitiyook P (2017) Phytoremediation potential of plants growing on the Pb-contaminated soil at the Song Tho Pb Mine, Thailand. Soil Sediment Contam Int J 26(4):426–437.  https://doi.org/10.1080/15320383.2017.1348336CrossRefGoogle Scholar
  83. Zhao FJ, Jiang RF, Dunham SJ, McGrath SP (2006) Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol 172(4):646–654.  https://doi.org/10.1111/j.1469-8137.2006.01867.xCrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mumtaz Khan
    • 1
    • 2
  • Salma Shaheen
    • 2
  • Shafaqat Ali
    • 3
    • 4
    Email author
  • Zhang Yi
    • 1
  • Li Cheng
    • 1
  • Samrana
    • 1
  • Muhammad Daud Khan
    • 5
  • Muhammad Azam
    • 6
  • Muhammad Rizwan
    • 3
  • Muhammad Afzal
    • 7
  • Ghazala Irum
    • 8
  • Muhammad Jamil Khan
    • 2
  • Zhu Shuijin
    • 1
  1. 1.Department of Agronomy, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Department of Soil and Environmental SciencesGomal UniversityDera Ismail KhanPakistan
  3. 3.Department of Environmental Science and EngineeringGovernment College UniversityFaisalabadPakistan
  4. 4.Department of Biological Sciences and TechnologyChina Medical University (CMU)TaichungTaiwan
  5. 5.Department of Biotechnology and Genetic EngineeringKohat University of Science and TechnologyKohatPakistan
  6. 6.Department of HorticultureUniversity of AgricultureFaisalabadPakistan
  7. 7.College of Environmental and Resource SciencesZhejiang UniversityHangzhouPeople’s Republic of China
  8. 8.National Center of Excellence in Physical ChemistryUniversity of PeshawarPeshawarPakistan

Personalised recommendations