Advertisement

A Theory of Quaternionic G-Monogenic Mappings in \(E_{3}\)

  • T. S. Kuzmenko
  • V. S. Shpakivskyi
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 179)

Abstract

We consider a class of so-called quaternionic G-monogenic (differentiable in the sense of Gâteaux) mappings and propose a description of all mappings in this class by using four analytic functions of complex variable. For G-monogenic mappings we generalize some analogues of classical integral theorems of the holomorphic function theory of one complex variable (the surface and the curvilinear Cauchy integral theorems, the Morera theorem), and Taylor and Laurent expansions. Moreover, we introduce a new class of quaternionic H-monogenic (differentiable in the sense of Hausdorff) mappings and establish the relation between G-monogenic and H-monogenic mappings. In addition, we prove the theorem of equivalence of different definitions of a G-monogenic mapping.

Keywords

Algebra of complex quaternions G-monogenic mappings Constructive description Integral theorems Taylor and Laurent expansions Singular points H-monogenic mappings 

Notes

Acknowledgements

This research is partially supported by Grant of Ministry of Education and Science of Ukraine (Project No. 0116U001528).

References

  1. Alpay, D., Colombo, F., Sabadini, I.: Slice hyperholomorphic Schur Analysis. Birkhäuser (2016)Google Scholar
  2. Bitsadze, A.V.: Boundary-value Problems for Elliptic Equations of the Second Order. Nauka, Moscow (1966). (in Russian)Google Scholar
  3. Blum, E.K.: A theory of analytic functions in Banach algebras. Trans. Amer. Math. Soc. 78, 343–370 (1955)MathSciNetCrossRefGoogle Scholar
  4. Bryukhov, D., Kähler, U.: The static Maxwell system in three dimensional axially symmetric inhomogeneous media and axially symmetric generalization of the Cauchy-Riemann system. Adv. Appl. Clifford Algebra 27(2), 993–1005 (2017)MathSciNetCrossRefGoogle Scholar
  5. Cartan, E.: Les groupes bilinéares et les systèmes de nombres complexes. Annales de la faculté des sciences de Toulouse 12(1), 1–64 (1898)MathSciNetCrossRefGoogle Scholar
  6. Colombo, F., Sabadini, I., Struppa, D.C.: Entire Slice Regular Functions. Springer (2016)Google Scholar
  7. Colombo, F., Sabadini, I., Struppa, D.C.: Noncommutative functional calculus: theory and applications of slice hyperholomorphic functions. In: Progress in Mathematics, vol. 289 (2011)Google Scholar
  8. Cullen, C.G.: An integral theorem for analytic intrinsic functions on quaternions. Duke Math. J. 32, 139–148 (1965)MathSciNetCrossRefGoogle Scholar
  9. Eriksson, S.-L., Leutwiler, H.: An improved Cauchy formula for hypermonogenic functions. Adv. Appl. Clifford Alg. 19(2), 269–282 (2009)MathSciNetCrossRefGoogle Scholar
  10. Eriksson-Bique, S.-L.: A correspondence of hyperholomorphic and monogenic functions in \(\mathbb{R}^4\). Clifford Analysis and Its Applications, NATO Science Series 25, 71–80 (2001)MathSciNetCrossRefGoogle Scholar
  11. Flaut, C., Shpakivskyi, V.: Holomorphic functions in generalized Cayley-Dickson algebras. Adv. Appl. Clifford Algebra 25(1), 95–112 (2015)MathSciNetCrossRefGoogle Scholar
  12. Flaut, C.: Some connections between binary block codes and Hilbert algebras. In: Maturo, A., et al. (ed.) Recent Trends in Social Systems: Quantitative Theories and Quantitative Models, Studies in Systems, Decision and Control, vol. 66, pp. 249–256 (2017)Google Scholar
  13. Fueter, R.: Die Funktionentheorie der Differentialgleichungen \(\Delta u=0\) und \(\Delta \Delta u=0\) mit vier reellen Variablen. Comment. math. helv. 7, 307–330 (1935)MathSciNetCrossRefGoogle Scholar
  14. Gentili, G., Stoppato, C., Struppa, D.: Regular Functions of a Quaternionic Variable. Springer Monographs in Mathematics (2013)Google Scholar
  15. Gentili, G., Struppa, D.C.: A new approach to Cullen-regular functions of a quaternionic variable. Comptes Rendus Mathematique 342(10), 741–744 (2006)MathSciNetCrossRefGoogle Scholar
  16. Gerus, O.F., Shapiro, M.: On the boundary values of a quaternionic generalization of the Cauchy-type integral in \(\mathbb{R}^2\) for rectifiable curves. J. Nat. Geom. 24(1–2), 121–136 (2003)MathSciNetzbMATHGoogle Scholar
  17. Gürlebeck, K., Sprössig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley (1997)Google Scholar
  18. Hausdorff, F.: Zur Theorie der Systeme complexer Zahlen. Leipziger Berichte 52, 43–61 (1900)zbMATHGoogle Scholar
  19. Hempfling, Th, Leutwiler, H.: Modified quaternionic analysis in \(\mathbb{R}^4\), Clifford algebras and their appl. in math. physics, pp. 227–238. Kluwer, Aachen, Dordrecht (1998)Google Scholar
  20. Herus, O.F.: On hyperholomorphic functions of the space variable. Ukr. Math. J. 63(4), 530–537 (2011)MathSciNetCrossRefGoogle Scholar
  21. Hille, E., Phillips, R.S.: Functional analysis and semi-groups. Am. Math, Soc (1948)zbMATHGoogle Scholar
  22. Ju, J.: Trohimchuk, Continuous Mappings and Conditions of Monogenity, Israel Program for Scientific Translations. Jerusalem; Daniel Davey and Co., Inc, New York (1964)Google Scholar
  23. Ketchum, P.W.: Analytic functions of hypercomplex variables. Trans. Amer. Math. Soc. 30(4), 641–667 (1928)MathSciNetCrossRefGoogle Scholar
  24. Kisil, V.V.: Analysis in \(\mathbf{R}^{1,1}\) or the principal function theory. Complex Var. Theory Appl. 40(2), 93–118 (1999)MathSciNetzbMATHGoogle Scholar
  25. Kisil, V.V.: How Many Essentially Different Function Theories Exist? In: Clifford Algebras and Their Application in Mathematical Physics ,vol. 94, pp. 175–184. Kluwer Academic Publishers, Dordrecht (1998)CrossRefGoogle Scholar
  26. Kisil, V.V.: Erlangen programme at large: an overview. In: Rogosin, S.V., Koroleva, A.A. (eds.) Advances in Applied Analysis, vol. 94, pp. 1–94. Birkhäuser Verlag, Basel (2012)Google Scholar
  27. Kravchenko, V.V., Shapiro, M.V.: Integral Representations for Spatial Models of Mathematical Physics. Addison Wesley Longman Inc, Pitman Research Notes in Mathematics (1996)zbMATHGoogle Scholar
  28. Kravchenko, V.V.: Applied Quaternionic Analysis. Heldermann Verlag (2003)Google Scholar
  29. Kuzmenko, T.S.: Curvilinear integral theorem for \(G\)-monogenic mappings in the algebra of complex quaternion. Int. J. Adv. Res. Math. 6, 21–25 (2016)CrossRefGoogle Scholar
  30. Kuzmenko, T.S.: Power and Laurent series in the algebra of complex quaternion. In: Proceedings of the Institute Mathematics of the National Academy of Sciences of Ukraine, vol. 12, iss. 3, pp. 164–174 (2015). (in Ukrainian)Google Scholar
  31. Kuzmenko, T.S., Shpakivskyi, V.S.: Generalized integral theorems for the quaternionic \(G\)-monogenic mappings. J. Math. Sci. 224(4), 530–540 (2017)MathSciNetCrossRefGoogle Scholar
  32. Leutwiler, H., Zeilinger, P.: On quaternionic analysis and its modifications. Comput. Methods Funct. Theory 4(1), 159–182 (2004)MathSciNetCrossRefGoogle Scholar
  33. Leutwiler, H.: Modified quaternionic analysis in \(\mathbb{R}^3\). Complex variables theory appl. 20, 19–51 (1992)MathSciNetCrossRefGoogle Scholar
  34. Luna-Elizarrarás, M.E., Shapiro, M., Struppa, D.C., Vajiac, A.: Bicomplex holomorphic functions: the algebra, geometry and analysis of bicomplex numbers. Birkhäuser (2015)Google Scholar
  35. Moisil, G.C., Theodoresco, N.: Functions holomorphes dans l’espace. Mathematica (Cluj) 5, 142–159 (1931)Google Scholar
  36. Plaksa, S.A., Pukhtaievych, R.P.: Monogenic functions in a finite-dimensional semi-simple commutative algebra. An. Şt. Univ. Ovidius Constanţa 22(1), 221–235 (2014)MathSciNetzbMATHGoogle Scholar
  37. Plaksa, S.A., Shpakovskii, V.S.: Constructive description of monogenic functions in a harmonic algebra of the third rank. Ukr. Math. J. 62(8), 1251–1266 (2011)MathSciNetCrossRefGoogle Scholar
  38. Portman, W.O.: A derivative for Hausdorff-analytic functions. Proc. Amer. Math. Soc. V(10), 101–105 (1959)Google Scholar
  39. Privalov, I.I.: Introduction to the Theory of Functions of a Complex Variable. GITTL, Moscow (1977). (in Russian)Google Scholar
  40. Rinehart, R.F., Wilson, J.C.: Two types of differentiability of functions on algebras. Rend. Circ. Matem. Palermo, II(11), 204–216 (1962)MathSciNetCrossRefGoogle Scholar
  41. Ringleb, F.: Beiträge zur funktionentheorie in hyperkomplexen systemen. I. Rend. Circ. Mat. Palermo 57(1), 311–340 (1933)CrossRefGoogle Scholar
  42. Schneider, B.: Some properties of a Cauchy-type integral for the Moisil-Theodoresco system of partial differential equations. Ukr. Math. J. 58(1), 105–112 (2006)MathSciNetCrossRefGoogle Scholar
  43. Segre, C.: The real representations of complex elements and extension to bicomplex systems. Math. Ann. 40, 413–467 (1892)MathSciNetCrossRefGoogle Scholar
  44. Shabat, B.V.: Introduction to Complex Analysis, Part 1. Nauka, Moskow (1976). (in Russian)Google Scholar
  45. Shpakivskyi, V.S., Kuzmenko, T.S.: Integral theorems for the quaternionic \(G\)-monogenic mappings. An. Şt. Univ. Ovidius Constanţa 24(2), 271–281 (2016)MathSciNetzbMATHGoogle Scholar
  46. Shpakivskyi, V.S.: Constructive description of monogenic functions in a finite-dimensional commutative associative algebra. Adv. Pure Appl. Math. 7(1), 63–76 (2016)MathSciNetzbMATHGoogle Scholar
  47. Shpakivskyi, V.S., Kuzmenko, T.S.: On monogenic mappings of a quaternionic variable. J. Math. Sci. 221(5), 712–726 (2017)MathSciNetCrossRefGoogle Scholar
  48. Shpakivskyi, V.S., Kuzmenko, T.S.: On one class of quaternionic mappings. Ukr. Math. J. 68(1), 127–143 (2016)CrossRefGoogle Scholar
  49. Sudbery, A.: Quaternionic analysis. Math. Proc. Camb. Phil. Soc. 85, 199–225 (1979)MathSciNetCrossRefGoogle Scholar
  50. Tolstov, G.P.: On the curvilinear and iterated integral, Trudy Mat. Inst. Steklov. Acad. Sci. USSR 35, 3–101 (1950). (in Russian)MathSciNetGoogle Scholar
  51. Van der Waerden, B.L.: Algebra, vol. 1. Springer (1991)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Complex Analysis and Potential TheoryInstitute of Mathematics of the National Academy of Science of UkraineKyivUkraine

Personalised recommendations