Evolution, Development and Complexity pp 195-227 | Cite as
A Multi-scale View of the Emergent Complexity of Life: A Free-Energy Proposal
Abstract
We review some of the main implications of the free-energy principle (FEP) for the study of the self-organization of living systems – and how the FEP can help us to understand (and model) biotic self-organization across the many temporal and spatial scales over which life exists. In order to maintain its integrity as a bounded system, any biological system – from single cells to complex organisms and societies – has to limit the disorder or dispersion (i.e., the long-run entropy) of its constituent states. We review how this can be achieved by living systems that minimize their variational free energy. Variational free energy is an information-theoretic construct, originally introduced into theoretical neuroscience and biology to explain perception, action, and learning. It has since been extended to explain the evolution, development, form, and function of entire organisms, providing a principled model of biotic self-organization and autopoiesis. It has provided insights into biological systems across spatiotemporal scales, ranging from microscales (e.g., sub- and multicellular dynamics), to intermediate scales (e.g., groups of interacting animals and culture), through to macroscale phenomena (the evolution of entire species). A crucial corollary of the FEP is that an organism just is (i.e., embodies or entails) an implicit model of its environment. As such, organisms come to embody causal relationships of their ecological niche, which, in turn, is influenced by their resulting behaviors. Crucially, free-energy minimization can be shown to be equivalent to the maximization of Bayesian model evidence. This allows us to cast evolution (i.e., natural selection) in terms of Bayesian model selection, providing a robust theoretical account of how organisms come to match or accommodate the spatiotemporal complexity of their surrounding niche. In line with the theme of this volume, namely, biological complexity and self-organization, this chapter will examine a variational approach to self-organization across multiple dynamical scales.
Keywords
Free-energy principle Active inference Self-organization Markov blanket Niche construction Variational neuroethologyReferences
- Adams, R. A., Bauer, M., Pinotsis, D., & Friston, K. J. (2016). Dynamic causal modelling of eye movements during pursuit: Confirming precision-encoding in V1 using MEG. NeuroImage, 132, 175–189.CrossRefGoogle Scholar
- Ao, P. (2008). Emerging of Stochastic Dynamical Equalities and Steady State Thermodynamics. Commun. Theor. Phys. (Beijing, China), 49, 1073–1090.Google Scholar
- Arnal, L. H., Wyart, V., & Giraud, A.-L. (2011). Transitions in neural oscillations reflect prediction errors generated in audiovisual speech. Nature Neuroscience, 14(6), 797–801.CrossRefGoogle Scholar
- Badcock, P. B. (2012). Evolutionary systems theory: A unifying meta-theory of psychological science. Review of General Psychology: Journal of Division 1, of the American Psychological Association, 16(1), 10–23.CrossRefGoogle Scholar
- Badcock, P. B., Davey, C. G., Whittle, S., Allen, N. B., & Friston, K. J. (2017). The Depressed Brain: An Evolutionary Systems Theory. Trends in Cognitive Sciences, 21(3), 182–194.CrossRefGoogle Scholar
- Badcock, P. B., Ploeger, A., & Allen, N. B. (2016). After phrenology: Time for a paradigm shift in cognitive science. The Behavioral and Brain Sciences, 39, e121.CrossRefGoogle Scholar
- Barandiaran, X., & Moreno, A. (2008). Adaptivity: From Metabolism to Behavior. Adaptive Behavior, 16(5), 325–344.CrossRefGoogle Scholar
- Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012, November 21). Canonical Microcircuits for Predictive Coding. Neuron.Google Scholar
- Berger, P. L. & T. Luckmann. (1966). The Social Construction of Reality: A Treatise in the Sociology of Knowledge. Garden City, NY: Anchor Books.Google Scholar
- Branco, T., Clark, B. A., & Häusser, M. (2010). Dendritic discrimination of temporal input sequences in cortical neurons. Science, 329(5999), 1671–1675.ADSCrossRefGoogle Scholar
- Bruineberg, J. (2018). Anticipating affordances: Intentionality in self-organizing brain-body-environment systems (Doctoral dissertation). Retrieved from UvA-DARE.Google Scholar
- Bruineberg, J., & Rietveld, E. (2014). Self-organization, free energy minimization, and optimal grip on a field of affordances. Frontiers in Human Neuroscience, 8, 599.CrossRefGoogle Scholar
- Campbell, J. O. (2016). Universal Darwinism As a Process of Bayesian Inference. Frontiers in Systems Neuroscience, 10, 49.CrossRefGoogle Scholar
- Chemero, A. (2009). Radical embodied cognition. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
- Clark, A. (2015). Surfing uncertainty: prediction, action, and the embodied mind. New York, N.Y.: Oxford University Press.Google Scholar
- Colombo, M. (2014). Explaining social norm compliance. A plea for neural representations. Phenomenol. Cogn. Sci. 13, 217–238.CrossRefGoogle Scholar
- Constant, A., Bervoets, J., Hens, K., & Van de Cruys, S. (2018a). Precise Worlds for Certain Minds: An Ecological Perspective on the Relational Self in Autism. Topoi. An International Review of Philosophy, 1–13.Google Scholar
- Constant, A., Ramstead, M. J. D., Veissière, S. P. L., Campbell, J. O., & Friston, K. J. (2018b). A variational approach to niche construction. Journal of the Royal Society, Interface, 15(141).Google Scholar
- Cook, R., Bird, G., Catmur, C., Press, C., & Heyes, C. (2014). Mirror neurons: From origin to function. Behavioral and Brain Sciences, 37(2), 177–192.CrossRefGoogle Scholar
- Dawkins, R. (1976). The Selfish Gene, New York: Oxford University Press.Google Scholar
- Edelman, G. M. (1987). The Theory of Neuronal Group Selection. New York: Basic Books.Google Scholar
- Engel, A. K., Friston, K. J., & Kragic, D. (2016). The Pragmatic Turn: Toward Action-Oriented Views in Cognitive Science. MIT Press.Google Scholar
- Fragaszy, D. M. (2011). Community Resources for Learning: How Capuchin Monkeys Construct Technical Traditions. Biological Theory, 6(3), 231–240. https://doi.org/10.1007/s13752-012-0032-8 CrossRefGoogle Scholar
- Fragaszy, D. M., Eshchar, Y., Visalberghi, E., Resende, B., Laity, K., & Izar, P. (2017). Synchronized practice helps bearded capuchin monkeys learn to extend attention while learning a tradition. Proceedings of the National Academy of Sciences, 114(30), 7798–7805.CrossRefGoogle Scholar
- Friston, K. J. (2010). The free-energy principle: a unified brain theory? Nature Reviews. Neuroscience, 11(2), 127–138.CrossRefGoogle Scholar
- Friston, K., Levin, M., Sengupta, B., & Pezzulo, G. (2015). Knowing one’s place: A free-energy approach to pattern regulation. Journal of the Royal Society Interface, 12(105), 20141383.CrossRefGoogle Scholar
- Friston, K. J. (2013). Life as we know it. Journal of the Royal Society, Interface / the Royal Society, 10(86), 20130475.CrossRefGoogle Scholar
- Friston, K., & Ao, P. (2012). Free-energy, value and attractors. Computational and mathematical methods in medicine, 937860.zbMATHGoogle Scholar
- Friston, K. J., Daunizeau, J., & Kiebel, S. J. (2009). Reinforcement learning or active inference? PloS One, 4(7), e6421.ADSCrossRefGoogle Scholar
- Friston, K. J., & Frith, C. D. (2015). Active inference, communication and hermeneutics. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 68, 129–43.CrossRefGoogle Scholar
- Friston, K., Mattout, J., & Kilner, J. (2011). Action understanding and active inference. Biological Cybernetics, 104(1–2), 137–160.MathSciNetzbMATHCrossRefGoogle Scholar
- Friston, K., Thornton, C., & Clark, A. (2012). Free-energy minimization and the dark-room problem. Frontiers in Psychology, 3, 130.Google Scholar
- Gibson, J. J. (1979). The ecological approach to visual perception: classic edition. Psychology Press.Google Scholar
- Godfrey-Smith, P. (1996). Complexity and the Function of Mind in Nature. Cambridge University Press.Google Scholar
- Gulledge, A. T., Kampa, B. M., & Stuart, G. J. (2005). Synaptic integration in dendritic trees. Journal of Neurobiology, 64(1), 75–90.CrossRefGoogle Scholar
- Hamilton, W. D. (1964). The genetical evolution of social behaviour. I. Journal of Theoretical Biology, 7(1), 1–16.MathSciNetCrossRefGoogle Scholar
- Hickok, G. (2010). The role of mirror neurons in speech perception and action word semantics. Language and Cognitive Processes, 25:6, 749–776.CrossRefGoogle Scholar
- Hickok, G. (2013). Predictive coding? Yes, but from what source? The Behavioral and Brain Sciences, 36(4), 358.CrossRefGoogle Scholar
- Hohwy, J. (2013). The predictive mind. Oxford: Oxford University Press.CrossRefGoogle Scholar
- Hohwy, J. (2016), The Self-Evidencing Brain. Noûs, 50: 259–285.CrossRefGoogle Scholar
- Huygens, C. (1673). Horologium oscillatorium. France: Parisiis.Google Scholar
- Kiebel, S. J., Daunizeau, J., & Friston, K. J. (2008). A hierarchy of time-scales and the brain. PLoS Computational Biology, 4(11), e1000209.ADSCrossRefGoogle Scholar
- Kiebel, S. J., & Friston, K. J. (2011). Free energy and dendritic self-organization. Frontiers in Systems Neuroscience, 5, 80.CrossRefGoogle Scholar
- Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: an account of the mirror neuron system. Cognitive Processing, 8(3), 159–166.CrossRefGoogle Scholar
- Kirchhoff, M. (2017a). Predictive brains and embodied, enactive cognition: an introduction to the special issue. Synthese, 1–12.Google Scholar
- Kirchhoff, M., Parr, T., Palacios, E., Friston, K., & Kiverstein, J. (2018). The Markov blankets of life: autonomy, active inference and the free energy principle. Journal of the Royal Society, Interface / the Royal Society, 15(138). https://doi.org/10.1098/rsif.2017.0792
- Kirchhoff, M.D. (2017b). Predictive processing, perceiving and imagining: Is to perceive to imagine, or something close to it? Philosophical Studies, 1–17, doi: https://doi.org/10.1007/s11098-017-0891-8.
- Kirchhoff, M.D. (2015). Species of realization and the Free Energy Principle. The Australasian Journal of Philosophy, 93(4), 706–723.CrossRefGoogle Scholar
- Lendvai, B., Stern, E. A., Chen, B., and Svoboda, K. (2000). Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404, 876–881.ADSCrossRefGoogle Scholar
- Manneville, P. (1995). Dissipative Structures and Weak Turbulence. Springer Lecture Notes in Physics, 457, 257–272.ADSMathSciNetzbMATHCrossRefGoogle Scholar
- Maynard Smith, J. (1964). Group selection and kin selection. Nature, 201(4924), 1145–1147.CrossRefGoogle Scholar
- McKinley, J. (2015). Critical Argument and Writer Identity: Social Constructivism as a Theoretical Framework for EFL Academic Writing. Critical Inquiry in Language Studies, 12(3), 184–207.CrossRefGoogle Scholar
- Mirza, M. B., Adams, R. A., Mathys, C. D., & Friston, K. J. (2016). Scene Construction, Visual Foraging, and Active Inference. Frontiers in Computational Neuroscience, 10, 56.CrossRefGoogle Scholar
- Naiman, R. J., Johnston, C. A., & Kelley, J. C. (1988). Alteration of North American Streams by Beaver: The structure and dynamics of streams are changing as beaver recolonize their historic habitat. Bioscience, 38(11), 753–762.CrossRefGoogle Scholar
- Noë, A. (2004). Action in Perception. MIT Press.Google Scholar
- Odling-Smee, F. J., & Laland, K. N. (2000). Niche Construction and Gene-Culture Coevolution: An Evolutionary Basis for the Human. In T. N. S. Tonneau F. (Ed.), Perspectives in Ethology (Vol. Sciences Perspecties in Ethology, 13). Boston, MA: Springer.Google Scholar
- Odling-Smee, J., Erwin, D. H., Palkovacs, E. P., Feldman, M. W., & Laland, K. N. (2013). Niche construction theory: a practical guide for ecologists. The Quarterly Review of Biology, 88(1), 4–28.CrossRefGoogle Scholar
- Odling-Smee, J., Laland, K. N., & Feldman, M. W. (2003). Niche Construction: The Neglected Process in Evolution. Princeton University Press.Google Scholar
- Palacios, E. R., Razi, A., Parr, T., Kirchhoff, M., & Friston, K. (2017, November 30). Biological Self-organisation and Markov blankets. bioRxiv. bioRxiv.Google Scholar
- Orgel, L. E., & Crick, F. H. C. (1980). Selfish DNA: the ultimate parasite. Nature, 284(5757), 604–607.ADSCrossRefGoogle Scholar
- Parr, T., & Friston, K. J. (2018). Active inference and the anatomy of oculomotion. Neuropsychologia, 111, 334–343.CrossRefGoogle Scholar
- Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo, CA: Morgan Kaufmann.zbMATHGoogle Scholar
- Ramstead, M. J. D., Badcock, P. B., & Friston, K. J. (2017). Answering Schrödinger’s question: A free-energy formulation. Physics of Life Reviews. https://doi.org/10.1016/j.plrev.2017.09.001
- Ramstead, M. J. D., Badcock, P. B., & Friston, K. J. (2018). Variational neuroethology: Answering further questions: Reply to comments on “Answering Schrödinger’s question: A free-energy formulation.” Physics of Life Reviews, 24, 59–66.Google Scholar
- Ramstead, M. J. D., Veissière, S. P. L., & Kirmayer, L. J. (2016). Cultural affordances: scaffolding local worlds through shared intentionality and regimes of attention. Frontiers in Psychology, 7, 1090.CrossRefGoogle Scholar
- Seifert, U. (2012). Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep Prog Phys, 75(12), 126001. doi: https://doi.org/10.1088/0034-4885/75/12/126001 ADSCrossRefGoogle Scholar
- Sengupta, B., Stemmler, M. B., & Friston, K. J. (2013). Information and Efficiency in the Nervous System – A Synthesis. PLoS Computational Biology, 9(7).Google Scholar
- Sengupta, B., Tozzi, A., Cooray, G. K., Douglas, P. K., & Friston, K. J. (2016). Towards a Neuronal Gauge Theory. PLoS Biology, 14(3), e1002400.CrossRefGoogle Scholar
- Sgrò, C. M., Lowe, A. J. and Hoffmann, A. A. (2011), Building evolutionary resilience for conserving biodiversity under climate change. Evolutionary Applications, 4: 326–337.CrossRefGoogle Scholar
- Stotz, K. (2017). Why developmental niche construction is not selective niche construction: and why it matters. Interface Focus, 7(5), 20160157.CrossRefGoogle Scholar
- Sun, Y., Gomez, F., #252, & Schmidhuber, R. (2011). Planning to be surprised: optimal Bayesian exploration in dynamic environments. Paper presented at the Proceedings of the 4th international conference on Artificial general intelligence, Mountain View, CA.Google Scholar
- Thompson, E. (2007). Mind in life: biology, phenomenology, and the sciences of mind. Cambridge, MA: Harvard University Press.Google Scholar
- Torben-Nielsen, B., & Stiefel, K. M. (2009). Systematic mapping between dendritic function and structure. Network, 20(2), 69–105.CrossRefGoogle Scholar
- van Dijk, L., Withagen, R., & Bongers, R. M. (2015). Information without content: A Gibsonian reply to enactivists’ worries. Cognition, 134, 210–214.CrossRefGoogle Scholar
- Varela, F. G., Maturana, H. R., & Uribe, R. (1974). Autopoiesis: the organization of living systems, its characterization and a model. Currents in Modern Biology, 5(4), 187–96.Google Scholar
- Varela, F. J., Thompson, E., & Rosch, E. (2017). The Embodied Mind: Cognitive Science and Human Experience. MIT Press.Google Scholar
- Weiss, L., Brandl, P., & Frynta, D. (2015). Fear reactions to snakes in naïve mouse lemurs and pig-tailed macaques. Primates, 56(3), 279–284.CrossRefGoogle Scholar
- Yi, S., Wierstra, D., Schaul, T., & Schmidhuber, J. (2009). Stochastic search using the natural gradient. In Proceedings of the 26th Annual International Conference on Machine Learning – ICML ‘09 (pp. 1–8). New York, New York, USA: ACM Press.Google Scholar