The Equivalence of Free Energy and Information: Thermodynamic Descriptions as a Condition of Possibility of Objectivity

  • Joseph M. BrisendineEmail author
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)


The natural world is composed of dynamic forms of physical order over a wide range of length, time, and energy scales. Furthermore, these various forms of physical order form nested hierarchies in which certain processes are logically dependent on the stability of other processes. Over the past century, extensive labor has gone into theorizing about this complexity, and in pursuit of a satisfactory mathematical definition of “complexity.” At the same time, philosophical debate over “emergence vs reductionism” has ossified into well-trodden positions that lack any clear relationship to the mathematical and physical developments on the subject. The aim of this work is to present the advancements in physics over the past few decades, along with the proper meaning of the concept of information in statistical physics, in such a way that the significance of these developments to the traditional philosophical debate on emergence and reductionism becomes manifest. Our view is that the scaling requirements of thermodynamic descriptions should be understood as conditions of the possibility of being “objective” about a situation at a given scale, and thus identifies the natural scales of emergence for those objects. Several well-understood examples such as the relationship between the entropy and the structure of biological macromolecules and the ordered phases of fluids will be discussed. Next, we will illustrate both the proper meaning of entropy in classical thermodynamics and its relationship to Shannon information theory, demonstrating that free energy can be understood as a measure of information exchanged between a system and its environment. The correspondence of free energy and information in turn sets the stage for a more self-aware use of language in recognizing the implicit scaling limits that come with addressing the natural world at multiple scales simultaneously.


Free energy Information Information theory Statistical thermodynamics Stochastic processes Natural scales of emergence 


  1. Crooks, G., Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 1999, 60 (3) 2721–2726.ADSCrossRefGoogle Scholar
  2. Jarzynski, C., Nonequilibrium Equality for Free Energy Differences. Phys. Rev. Lett 1997, 78.ADSCrossRefGoogle Scholar
  3. Smith, E., Large-deviation principles, stochastic effective actions, path entropies, and the structure and meaning of thermodynamic descriptions. Reports on Progress in Physics 2011, 74 (4).ADSCrossRefGoogle Scholar
  4. Parrondo, J. M. R.; Horowitz, J. M.; Sagawa, T., Thermodynamics of information. Nat Phys 2015, 11 (2), 131–139.CrossRefGoogle Scholar
  5. Madan, D. B., Stochastic Processes in Finance. Annual Review of Financial Economics 2010, 2 277–314.CrossRefGoogle Scholar
  6. Bartolotta, A.; Deffner, S., Jarzynski Equality for Driven Quantum Field Theories. Phys. Rev. X 2018, 8.Google Scholar
  7. Jacobson, T., Thermodynamics of Spacetime: The Einstein Equation of State. Phys. Rev. Lett. 1995, 75.Google Scholar
  8. Leggett, A. J., The Quantum Measurement Problem. Science 2005, 307 871–872.Google Scholar
  9. Ledoux, M., The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 2001, 89.Google Scholar
  10. Romero, E.; Augulis, R.; Novoderezhkin, V. I.; Ferretti, M.; Thieme, J.; Zigmantas, D.; Grondelle, R. v., Quantum coherence in photosynthesis for efficient solar-energy conversion. Nature Physics 2014, 10 (9), 676.ADSCrossRefGoogle Scholar
  11. Gray, H. B.; Winkler, J. R., Electron tunneling through proteins. Q Rev Biophys 2003, 36 (3), 341–72.CrossRefGoogle Scholar
  12. Marcus, R. A.; Sutin, N., Electron transfers in chemistry and biology. Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics 1985, 811 (3), 265–322.CrossRefGoogle Scholar
  13. Li, X. E.; Lehman, W.; Fischer, S., The relationship between curvature, flexibility and persistence length in the tropomyosin coiled-coil. J Struct Biol 2010, 170 (2), 313–8.CrossRefGoogle Scholar
  14. Anfinsen, C. B., Principles that Govern the Folding of Protein Chains. Science 1973, 181 223–230.CrossRefGoogle Scholar
  15. Baez, J. Quantum Techniques for Reaction Networks. Advances in Math. Phys. 2018.Google Scholar
  16. Pastor-Satorras, R.; Sole, R. V., Field theory for a reaction-diffusion model of quasispecies dynamics. Phys. Rev. E 2001, 5.Google Scholar
  17. Friston, K.; FitzGerald, T.; Rigoli, F.; Schwartenbeck, P.; O’Doherty, J.; Pezzulo, G., Active inference and learning. Neuroscience & Biobehavioral Reviews 2016, 68, 862–879.CrossRefGoogle Scholar
  18. Varadhan, S. R. S., Large deviations. The Annals of Probability 2008, 36 (2), 397–419.MathSciNetCrossRefGoogle Scholar
  19. Shannon, C. E., A mathematical theory of communication. The Bell System Technical Journal 1948, XXVII (3).MathSciNetGoogle Scholar
  20. Gibbs, J. W., Elementary principles in statistical mechanics. Yale University Press 1902.Google Scholar
  21. Noether, E., Invariante Variationsprobleme. Klasse 1918,235–257.ADSMathSciNetCrossRefGoogle Scholar
  22. Hidalgo, C., Why Information Grows. Basic Books, 2015.Google Scholar
  23. Nicolis, G.; Prigogine, I., Self-organization in nonequilibrium systems. Wiley, New York: 1977; Vol. 191977.zbMATHGoogle Scholar
  24. Zwolak, M.; Riedel, C. J.; Zurek, W. H., Amplification, Decoherence, and the Acquisition of Information by Spin Environments. Scientific Reports 2016, 6.CrossRefGoogle Scholar
  25. Larson, R., The Evolution of Human Language: Biolinguistic Perspectives. Cambridge University Press 2010.Google Scholar
  26. Kim, C., Wilson Renormalization Group and Continuum Effective Field Theories. Arxiv 1998.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departments of Chemistry and PhysicsCity College of New YorkNew YorkUSA
  2. 2.Department of BiochemistryThe Rockefeller UniversityNew YorkUSA

Personalised recommendations