Analytical Electron Microscopy

  • Gianluigi BottonEmail author
  • Sagar Prabhudev
Part of the Springer Handbooks book series (SHB)


Analytical electron microscopy () refers to a collection of spectroscopic techniques that are capable of providing structural, compositional, and bonding information about samples probed by an electron beam, typically inside a transmission electron microscope (). Several AEM techniques are covered with particular attention given to the (energy-dispersive x-ray spectroscopy) microanalysis and (electron energy-loss spectroscopy) techniques. First, the different AEM techniques available in TEMs are surveyed and a parallel between EELS and EDXS is drawn. A fundamental description of the elastic and inelastic scattering events responsible for these signals is presented. The practical challenges related to electron optics and instrumentation capabilities are then discussed. Technical advances that have affected the performance of these AEM techniques are outlined, including successive generations and technologies of energy filters, monochromators, aberration correctors, and advanced energy-dispersive x-ray spectrometers. The different approaches of spectroscopic imaging with x-rays and energy-loss spectroscopy, the resolution limits, and the effects of electron-beam propagation are also described along with the types of information that can be extracted with electron-energy-loss near-edge structures. After a review of dielectric theory and low-loss spectroscopy, examples of plasmonic imaging are presented. The review also draws attention to the many efforts to extend the limits of spatial resolution and the atomic-level chemical analyses of materials. Some important progress in the statistical analysis of signals and associated numerical methods is mentioned. The review also presents some novel developments in image capture, such as the pixelated detectors. Finally, the realm of phonon spectroscopy made possible through the latest instrumentation is also discussed.



Gianluigi Botton is grateful for the patience and understanding of Peter Hawkes and John Spence who enabled him to do this work, particularly the first edition of this chapter despite on-going academic commitments, conference organization, and setting up of a new facility. GB is indebted to past members of his group for providing some figures and for feedback, in particular to N. Braidy, G. Radtke, M. Couillard, C. Maunders, Y. Zhu, G. Zhu, M. Bugnet, and S. Lazar. GB wants to thank several collaborators and friends who have provided, over the years, interesting samples, motivating discussions, and moralsupport.


  1. D.C. Joy, A.D.J. Romig, J.I. Goldstein: Principles of Analytical Electron Microscopy (Plenum, New York 1986)Google Scholar
  2. D.B. Williams, C.B. Carter: Transmission Electron Microscopy. A Textbook for Materials Science, 2nd edn. (Springer, New York 2009)Google Scholar
  3. D.B. Williams, C.B. Carter: Transmission Electron Microscopy. Diffraction, Imaging, and Spectrometry (Springer International Publishing, Cham 2016)Google Scholar
  4. W. Sigle: Analytical transmission electron microscopy, Annu. Rev. Mater. Res. 35, 239–314 (2005)Google Scholar
  5. R.F. Egerton: Electron energy loss spectroscopy in the TEM, Rep. Prog. Phys. 72, 016502 (2009)Google Scholar
  6. C. Colliex: New trends in STEM-based nano-EELS analysis, J. Electron Microsc. 45, 44 (1996)Google Scholar
  7. L. Reimer: Transmission Electron Microscopy (Springer, Heidelberg 1984)Google Scholar
  8. L. Solymar, D. Walsh: Lectures on the Electronic Properties of Materials, 7th edn. (Oxford Univ. Press, Oxford 2004)Google Scholar
  9. R.F. Egerton: Physical Principles of Electron Microscopy (Plenum, New York 2005)Google Scholar
  10. M.J. Fransen, T.L. van Rooy, P. Kruit: Field emission energy distributions from individual multiwalled carbon nanotubes, Appl. Surf. Sci. 146, 312 (2005)Google Scholar
  11. F. Houdellier, L. de Knoop, C. Gatel, A. Masseboeuf, S. Mamishin, Y. Taniguchi, M. Delmas, M. Monthioux, M.J. Hÿtch, E. Snoeck: Development of TEM and SEM high brightness electron guns using cold-field emission, Ultramicroscopy 151, 107–115 (2015)Google Scholar
  12. J.C.H. Spence, J.M. Zuo: Electron Microdiffraction (Plenum, New York 1992)Google Scholar
  13. N. Dellby, O.L. Krivanek, P.D. Nellist, P.E. Batson, A.R. Lupini: Progress in aberration-corrected scanning transmission electron microscopy, J. Electron Microsc. 50, 177 (2001)Google Scholar
  14. W.C.T. Dowell, P. Goodman: Image formation and contrast from the convergent electron beam, Philos. Mag. 28, 471 (1973)Google Scholar
  15. P. Nellist, S.J. Pennycook: Subangstrom resolution by underfocused incoherent transmission electron microscopy, Phys. Rev. Lett. 81, 4156 (1998)Google Scholar
  16. C. Mory, C. Colliex, J. Cowley: Optimum defocus for STEM imaging and microanalysis, Ultramicroscopy 21, 171 (1987)Google Scholar
  17. O.L. Krivanek, N. Dellby, A.K. Spence, R.A. Camps, L.M. Brown: Aberration correction in the STEM. In: Electron Microscopy and Microanalysis, Institute of Physics, Conference Series, Vol. 153 (IOP Publishing, London 1997) pp. 35–40Google Scholar
  18. U. Gross, F.J.M. Mescher, J.C. Tiemeijer: The microprocessor-controlled CM12/STEM scanning-transmission electron microscope, Philips Tech. Rev. 43(10), 273 (1987)Google Scholar
  19. J.M. Cowley: Image contrast in a transmission scanning electron microscope, Appl. Phys. Lett. 15(2), 58–59 (1969)Google Scholar
  20. M. Zeitler, M.G.R. Thomson: Scanning transmission electron microscopy, Optik 31(3), 258 (1970)Google Scholar
  21. C.J. Humphreys: Principles of STEM. In: Introduction to Analytical Electron Microscopy, ed. by D.C. Joy, A.D.J. Romig, J.I. Goldstein (Plenum, New York 1979)Google Scholar
  22. J. Cowley: Principles of image formation. In: Principles of Analytical Electron Microscopy, ed. by D.C. Joy, A.D. Romig Jr., J.I. Goldstein (Plenum, New York 1986) pp. 77–122Google Scholar
  23. N.W.M. Ritchie, D.E. Newbury, J.M. Davis: EDS measurements of x-ray intensity at WDS precision and accuracy using a silicon drift detector, Microsc. Microanal. 18, 892–904 (2012)Google Scholar
  24. P. Lechner, S. Eckbauer, R. Hartmann, S. Krisch, D. Hauff, R. Richter, H. Soltau, L. Struder, C. Fiorini, E. Gatti, E. Longoni, M. Sampietro: Silicon drift detectors for high-resolution room temperature x-ray spectroscopy, Nucl. Instr. Methods Phys. Res. A 377, 346–351 (1996)Google Scholar
  25. H. Strüder, L. Soltau: High resolution silicon detectors for photons and particles, Radiat. Prot. Dosim. 61, 39–46 (1995)Google Scholar
  26. D.E. Newbury, N.W.M. Ritchie: Quantitative electron-excited x-ray microanalysis of borides, carbides, nitrides, oxides, and fluorides with scanning electron microscopy/silicon drift detector energy-dispersive spectrometry (SEM/SDD-EDS) and NIST DTSA-II, Microsc. Microanal. 21(05), 1327–1340 (2015)Google Scholar
  27. D.E. Newbury, N.W.M. Ritchie: Elemental mapping of microstructures by scanning electron microscopy-energy dispersive x-ray spectrometry (SEM-EDS): Extraordinary advances with the silicon drift detector (SDD), J. Anal. At. Spectrom. 28(7), 973–988 (2013)Google Scholar
  28. G. L' Espérance, G.A. Botton, M. Caron: Detection and quantification problems in the analysis of light elements with UTW detectors. In: Proc. Microbeam Anal. Soc, ed. by P. Ingram (San Francisco, San Francisco 1990) p. 284Google Scholar
  29. J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C.E. Lyman, E. Lifshin, L. Sawyer, J.R. Michael: Scanning Electron Microscopy and X-Ray Microanalysis (Kluwer Academic, New York 2003)Google Scholar
  30. M.T. Otten: Transmission Electron Microscopes in Materials Research, The CM Series (Philips Electron Optics, Eindhoven 1996)Google Scholar
  31. C.S. Yeoh, D. Rossouw, Z. Saghi, P. Burdet, R.K. Leary, P.A. Midgley: The dark side of EDX tomography: Modeling detector shadowing to aid 3-D elemental signal analysis, Microsc. Microanal. 21(03), 759–764 (2015)Google Scholar
  32. W.A.P. Nicholson, C.C. Gray, J.N. Chapman, B.W. Robertson: Optimizing thin film x-ray spectra for quantitative analysis, J. Microsc. 125, 25 (1982)Google Scholar
  33. N.J. Zaluzec: Analytical formulae for calculation of x-ray detector solid angles in the scanning and scanning/transmission analytical electron microscope, Microsc. Microanal. 20(04), 1318–1326 (2014)Google Scholar
  34. W. Xu, J.H. Dycus, X. Sang, J.M. Le Beau: A numerical model for multiple detector energy dispersive x-ray spectroscopy in the transmission electron microscope, Ultramicroscopy 164, 51–61 (2016)Google Scholar
  35. R.F. Egerton: Electron Energy Loss Spectroscopy in the Electron Microscope, 2nd edn. (Plenum, New York 1996)Google Scholar
  36. R. Castaing, L. Henry: Filtrage magnetique des vitesses en microscopie electronique, C.R. Acad. Sci. Paris B 255, 76 (1962)Google Scholar
  37. J. Mayer, C. Deininger, L. Reimer: Electron spectroscopic diffraction. In: Energy Filtering Transmission Electron Microscopy, ed. by L. Reimer (Springer, Heidelberg 1995) pp. 291–345Google Scholar
  38. O.L. Krivanek, C.C. Ahn, R.B. Keeney: Parallel detection electron spectrometer using quadrupole lenses, Ultramicroscopy 22, 103 (1987)Google Scholar
  39. A. Gubbens, M. Barfels, C. Trevor, R. Twesten, P. Mooney, P. Thomas, B. McGinn: The GIF Quantum, a next generation post-column imaging energy filter, Ultramicroscopy 110(8), 962–970 (2010)Google Scholar
  40. M. Saunders: Quantitative zone-axis convergent beam electron diffraction: Current status and future prospects, Microsc. Microanal. 9, 411 (2003)Google Scholar
  41. H. Rose, D. Krahl: Electron optics of imaging filters. In: Energy Filtering Electron Microscopy, ed. by L. Reimer (Springer, Heidelberg 1995) p. 43Google Scholar
  42. O.L. Krivanek, A.J. Gubbens, N. Dellby: Developments in EELS instrumentation for spectroscopy and imaging, Microsc. Microanal. Microstruct. 2, 315–332 (1991)Google Scholar
  43. O.L. Krivanek, S.L. Friedman, A.J. Gubbens, B. Kraus: An imaging filter for biological applications, Ultramicroscopy 59, 267 (1995)Google Scholar
  44. M. Terauchi, M. Tanaka, K. Tsuno, M. Ishida: Development of a high energy resolution electron energy-loss spectroscopy microscope, J. Microsc. 194, 203 (1999)Google Scholar
  45. R.F. Egerton: New techniques in electron energy-loss spectroscopy and energy-filtered imaging, Micron 34, 127 (2003)Google Scholar
  46. S. Lazar, G.A. Botton, M.-Y. Wu, F.D. Tichelaar, H.W. Zandbergen: Materials science applications of HREELS in near edge structure analysis and low-energy loss spectroscopy, Ultramicroscopy 96, 535 (2003)Google Scholar
  47. C. Mitterbauer, G. Kothleithner, F. Hofer, H. Zandbergen: Electron energy-loss near-edge structures of 3d transition metal oxides recorded at high energy resolution, Ultramicroscopy 96, 469 (2003)Google Scholar
  48. M.M.G. Barfels, P. Burgner, R. Edwards, H.A. Brink: A new high stability, 4th order aberration corrected spectrometer and imaging filter for a monochromated TEM, Microsc. Microanal. 8(Suppl. 2), 614CD (2002)Google Scholar
  49. P.C. Tiemeijer, J.H.A. van Lin, A.F. de Jong: First results of a monochromatized 200 kV TEM, Microsc. Microanal. 7(suppl. 2), 1130 (2001)Google Scholar
  50. M. Tanaka, M. Terauchi, K. Tsuda, K. Saitoh, M. Mukai, T. Kaneyama, T. Tomita, K. Tsuno, M. Kersker, M. Naruse, T. Honda: Development of an 0.2 eV energy resolution analytical electron microscope, Microsc. Microanal. 8(Suppl. 2), 68 (2002)Google Scholar
  51. S. Uhlemann, M. Haider: Experimental set-up of a purely electrostatic monochromator for high resolution and analytical purposes of a 200 kV TEM, Microsc. Microanal. 8(suppl. 2), 584 (2002)Google Scholar
  52. O.L. Krivanek, J.P. Ursin, N.J. Bacon, G.J. Corbin, N. Dellby, P. Hrncirik, Z.S. Szilagyi: High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy, Philos. Trans. Royal Soc. A 367(1903), 3683–3697 (2009)Google Scholar
  53. O.L. Krivanek, T.C. Lovejoy, G.J. Corbin, N. Dellby, M.F. Murfitt, N. Kurz, R.W. Carpenter: Monochromated STEM with high energy and spatial resolutions, Microsc. Microanal. 18(S2), 330–331 (2012)Google Scholar
  54. P. Rez, T. Aoki, K. March, D. Gur, O.L. Krivanek, N. Dellby, T.C. Lovejoy, A.G. Wolf, H. Cohen: Damage-free vibrational spectroscopy of biological materials in the electron microscope, Nat. Commun. 7, 10945 (2016)Google Scholar
  55. M. Tencé, H. Pinna, T. Birou, L. Guiraud, A. Mayet, C. Pertel, V.C. Serin, C. Colliex: A new detector device designed for quantitative EELS spectroscopy. In: Proc. 16th Int. Microsc. Congr., Sapporo, Japan, 3–8 September 2006, ed. by H. Ichinose, T. Sasaki (2006) p. 824Google Scholar
  56. J.L. Hart, A.C. Lang, C. Trevor, R. Twesten, M.L. Taheri: Performance of a direct electron detector for the application of electron energy-loss spectroscopy, Microsc. Microanal. 22(S3), 336–337 (2016)Google Scholar
  57. S.L. Chang, C. Dwyer, J. Barthel, C.B. Boothroyd, R.E. Dunin-Borkowski: Performance of a direct detection camera for off-axis electron holography, Ultramicroscopy 161, 90–97 (2016)Google Scholar
  58. M. Varela, S.D. Findlay, A.R. Lupini, H.M. Christen, A.Y. Borisevich, N. Dellby, O.L. Krivanek, P.D. Nellist, M.P. Oxley, L.J. Allen, S.J. Pennycook: Spectroscopic imaging of single atoms within a bulk solid, Phys. Rev. Lett. 92, 095502 (2004)Google Scholar
  59. I. Arslan, A. Bleloch, E.A. Stach, N.D. Browning: Atomic and electronic structure of mixed and partial dislocations in GaN, Phys. Rev. Lett. 94, 025504 (2005)Google Scholar
  60. K. Kimoto, T. Asaka, T. Nagai, M. Saito, Y. Matsui, K. Ishizuka: Element-selective imaging of atomic columns in a crystal using STEM and EELS, Nature 450, 702–704 (2007)Google Scholar
  61. D.A. Muller, L.F. Kourkoutis, M. Murfitt, J.H. Song, H.Y. Hwang, J. Silcox, N. Dellby, O.L. Krivanek: Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy, Science 319(5866), 1073–1076 (2008)Google Scholar
  62. G.A. Botton, S. Lazar, C. Dwyer: Elemental mapping at the atomic scale using low accelerating voltages, Ultramicroscopy 110, 926–934 (2010)Google Scholar
  63. S. Lazar, Y. Shao, L. Gunawan, R. Nechache, A. Pignolet, G.A. Botton: Imaging, core-loss, and low-loss electron-energy-loss spectroscopy mapping in aberration-corrected STEM, Microsc. Microanal. 16, 416–424 (2010)Google Scholar
  64. M. Watanabe, D.B. Williams: Current state of x-ray mapping/spectrum-imaging in conventional and Cs-corrected analytical scanning transmission electron microscopes. Towards atomic-scale resolution, Scanning 27, 94 (2005)Google Scholar
  65. M. Watanabe, D.W. Ackland, A. Burrows, C.J. Kiely, D.B. Williams, M. Kanno, R. Hynes: Advantages of Cs-correctors for spectrometry in STEM, Microsc. Microanal. 11(Suppl. 2), 2132 (2005)Google Scholar
  66. M.W. Chu, S.C. Liou, C.P. Chang, F.S. Choa, C.H. Chen: Emergent chemical mapping at atomic-column resolution by energy-dispersive x-ray spectroscopy in an aberration-corrected electron microscope, Phys. Rev. Lett. 104(19), 196101 (2010)Google Scholar
  67. G. Kothleitner, M.J. Neish, N.R. Lugg, S.D. Findlay, W. Grogger, F. Hofer, L.J. Allen: Quantitative elemental mapping at atomic resolution using x-ray spectroscopy, Phys. Rev. Lett. 112, 085501 (2014)Google Scholar
  68. R.F. Egerton: Vibrational-loss EELS and the avoidance of radiation damage, Ultramicroscopy 159, 95–100 (2015)Google Scholar
  69. L. Reimer: Introduction. In: Energy Filtering Transmission Electron Microscopy, ed. by L. Reimer (Springer, Heidelberg 1995) p. 1Google Scholar
  70. C. Dwyer, J. Etheridge: Scattering of Å-scale electron probes in silicon, Ultramicroscopy 96, 343 (2003)Google Scholar
  71. P. Voyles, D.A. Muller: Depth-dependent imaging of individual dopant atoms in silicon, Microsc. Microanal. 10, 291 (2004)Google Scholar
  72. G. Möbus, S. Nufer: Nanobeam propagation and imaging in a FEGTEM/STEM, Ultramicroscopy 96, 285 (2003)Google Scholar
  73. C. Colliex, C. Mory: Quantitative aspects of scanning transmission electron miscroscopy. In: Quantitative Electron Microscopy, ed. by J.N. Chapman, A.J. Craven (SUSSP, Edinburgh 1984) p. 149Google Scholar
  74. B.P. Luo, E. Zeitler: M-shell cross-sections for fast electron inelastic collisions based on photoabsorption data, J. Electron Spectrosc. Relat. Phenom. 57, 285 (1991)Google Scholar
  75. R.D. Leapman, P. Rez, D.F. Mayers: K, L, and M shell generalized oscillator strengths and ionization cross sections for fast electron collisions, J. Chem. Phys. 72, 1232 (1980)Google Scholar
  76. P. Rez: Cross-sections for energy loss spectrometry, Ultramicroscopy 9, 283 (1982)Google Scholar
  77. P.L. Potapov, K. Jorissen, D. Schryvers, D. Lamoen: Effect of charge transfer on EELS integrated cross sections in Mn and Ti oxides, Phys. Rev. B 70(4), 045106 (2004)Google Scholar
  78. R.F. Egerton, R.D. Leapman: Quantitative electron energy loss spectroscopy. In: Energy Filtering Transmission Electron Microscopy, ed. by L. Reimer (Springer, Heidelberg 1995) pp. 269–290Google Scholar
  79. R.F. Egerton: Oscillator-strength parameterization of inner-shell cross sections, Ultramicroscopy 50, 13 (1993)Google Scholar
  80. P. Schattschneider, W.S.M. Werner: Coherence in electron energy loss spectrometry, J. Electron Spectrosc. Relat. Phenom. 143, 81 (2005)Google Scholar
  81. P. Schattschneider, A. Exner: Progress in electron Compton scattering, Ultramicroscopy 59, 241 (1995)Google Scholar
  82. M. Inokuti: Inelastic collisions of fast charged particles with atoms and molecules—The Bethe theory revisited, Rev. Mod. Phys. 43, 297 (1971)Google Scholar
  83. M. Inokuti: Addenda: Inelastic collisions of fast charged particles with atoms ans molecules—The Bethe theory revisited, Rev. Mod. Phys. 50, 23 (1978)Google Scholar
  84. C.J. Powell: Cross section for ionization of inner shell electrons by electrons, Rev. Mod. Phys. 48, 33 (1976)Google Scholar
  85. J.I. Goldstein, D.B. Williams, G. Cliff: Quantitative x-ray analysis. In: Principles of Analytical Electron Microscopy, ed. by D.C. Joy, A.D.J. Romig, J.I. Goldstein (Plenum, New York 1986) p. 155Google Scholar
  86. F. Hofer: Inner shell ionization. In: Energy-Filtering Transmission Electron Microscopy, ed. by L. Reimer (Springer, Heidelberg 1995) p. 225Google Scholar
  87. N.J. Zaluzec: An electron energy loss spectral library, Ultramicroscopy 9(3), 319–323 (1982)Google Scholar
  88. B. Freitag, W. Mader: Element specific imaging with high lateral resolution: An experimental study on layer structures, J. Microsc. 194, 42 (1999)Google Scholar
  89. M.A. Kramers: XCIII. On the theory of x-ray absorption and the continuous x-ray spectrum, Philos. Mag. 46, 836 (1923)Google Scholar
  90. G.M. Reese, J.C.H. Spence, Y. Yamamoto: Coherent bremsstrahlung from kilovolt electrons in zone axis orientations, Philos. Mag. A 49, 697 (1984)Google Scholar
  91. J.C.H. Spence, G.M. Reese, Y. Yamamoto, G. Kurizki: Coherent bremsstrahlung peaks in x-ray microanalysis spectra, Philos. Mag. B 48, L39 (1983)Google Scholar
  92. G. Cliff, G.W. Lorimer: The quantitative analysis of thin specimens, J. Microsc. 103, 203 (1975)Google Scholar
  93. J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C.E. Fiori, E. Lifshin: Scanning Electron Microscopy and X-Ray Microanalysis: A Text for Biologists, Materials Scientists and Geologists (Plenum, New York 1981)Google Scholar
  94. P.M. Kelly, A. Jostson, R.G. Blake, J.G. Napier: The determination of foil thickness by scanning transmission electron microscopy, Phys. Status Solidi (a) 31(2), 771 (1975)Google Scholar
  95. R.W. Glitz, M.R. Notis, D.B. Williams: Considerations of x-ray absorption for STEM x-ray microanalysis of Ni-Al foils. In: Microbeam Analysis, ed. by R.H. Geiss (San Francisco, San Francisco 1981) pp. 309–312Google Scholar
  96. J. Philibert, R. Tixier: Electron probe microanalysis of transmission electron microscope specimens. In: Physical Aspects of Electron Microscop and Microbeam Analysis, ed. by D.R. Beaman, B.M. Siegel (Wiley, New York 1975) pp. 38–54Google Scholar
  97. C. Nockolds, M.J. Nasir, G. Cliff, G.W. Lorimer: X-ray fluorescence correction in thin foil analysis and direct methods for foil thickness measurement. In: Electron Microscopy and Analysis, Institute of Physics Conference Series, Vol. 52, ed. by T. Mulvey (Institute of Physics, Bristol 1979) pp. 417–420Google Scholar
  98. Z. Horita, T. Sano, M. Nemoto: Simplification of x-ray absorption correction in thin-sample quantitative microanalysis, Ultramicroscopy 21, 271 (1987)Google Scholar
  99. E. Van Cappellen: The parameterless correction method in x-ray microanalysis, Microsc. Microanal. Microstruct. 1, 1 (1990)Google Scholar
  100. O. Eibl: New method for absorption correction in high-accuracy, quantitative EDX microanalysis in the TEM including low-energy x-ray lines, Ultramicroscopy 50, 179 (1993)Google Scholar
  101. E. Van Cappellen, J.C. Doukhan: Quantitative transmission x-ray microanalysis of ionic compounds, Ultramicroscopy 53, 343 (1994)Google Scholar
  102. A.D. Westwood, J.R. Michael, M.R. Notis: Experimental determination of light-element k-factors using the extrapolation technique: Oxygen segregation in aluminium nitride, J. Microsc. 167, 287 (1992)Google Scholar
  103. M. Watanabe, D.B. Williams: The quantitative analysis of thin specimens: A review of progress from the Cliff–Lorimer to the new \(\zeta\)-factor methods, J. Microsc. 221(2), 89–109 (2006)Google Scholar
  104. J. Verbeeck, S. Van Aert: Model based quantification of EELS spectra, Ultramicroscopy 101, 207 (2004)Google Scholar
  105. R.D. Leapman, D.E. Newbury: Trace elemental analysis at nanometer spatial resolution by parallel detection electron energy loss spectroscopy, Anal. Chem. 65, 2409 (1993)Google Scholar
  106. H. Shuman, A.P. Somlyo: Electron energy loss analysis of near-trace-element concentrations of calcium, Ultramicroscopy 21, 23 (1987)Google Scholar
  107. N. Zaluzec: Digital filters for application to data analysis in electron energy-loss spectrometry, Ultramicroscopy 18, 185 (1985)Google Scholar
  108. T. Malis, J.M. Titchmarsh: A k-factor approach to EELS analysis. In: Electron Microscopy and Analysis, Institute of Physics Conference Series, (Institute of Physics, Bristol 1985) pp. 181–191Google Scholar
  109. S.C. Cheng, R.F. Egerton: Elemental analysis of thick amorphous specimens by EELS, Micron 24, 251 (1993)Google Scholar
  110. D.S. Su, H.F. Wang, E. Zeitler: The influence of plural scattering on EELS elemental analysis, Ultramicroscopy 59, 181 (1995)Google Scholar
  111. K. Wong, R.F. Egerton: Correction for the effects of elastic scattering in core-loss quantification, J. Microsc. 178, 198 (1995)Google Scholar
  112. N. Stenton, M.R. Notis, J.I. Goldstein, D.B. Williams: Determination of \(\phi (\rho t)\) curves for thin foil microanalysis. In: Quantitative Analysis with High Spatial Resolution, ed. by G.W. Lorimer, M.H. Jacobs, P. Doigt (The Metals Soc., London 1981) p. 35Google Scholar
  113. P. Rez: A transport equation theory of beam spreading in the electron microscope, Ultramicroscopy 12, 29 (1983)Google Scholar
  114. R.F. Loan, E.J. Kirkland, J. Silcox: Visibility of single heavy atoms on thin crystalline silicon in simulated annular dark-field STEM images, Acta Crystallogr. A 44, 912 (1988)Google Scholar
  115. P. Hovington, D. Drouin, R. Gauvin: Choosing the optimum accelerating voltage (EO) to visualize submicron precipitates with a field emission scanning electron microscope, Scanning 19, 438–447 (1997)Google Scholar
  116. R. Gauvin: Electron Beam Scattering Modeling., (McGill University)
  117. R.G. Faulkner, K. Norrgard: X-ray microanalytical sensitivity and spatial resolution in scanning transmission electron microscopes, X-Ray Spectrom. 7, 184 (1978)Google Scholar
  118. S.J.B. Reed, J.V.P. Long: X-ray optics and microanalysis. In: Proc. 4th Int. Cong. X-Ray Opt. Microanal., ed. by R. Castaing, R. Deschamps, J. Philibert (Hermann, Paris 1966) p. 339Google Scholar
  119. J.I. Goldstein, J.L. Costley, G.W. Lorimer, S.J.B. Reed: Quantitative x-ray analysis in the electron microscope. In: SEM/77, ed. by O. Johari (IITRI, Chicago 1977) pp. 315–324Google Scholar
  120. G. Cliff, G.W. Lorimer: Influence of plural electron scattering on x-ray spatial resolution in TEM thin foil microanalysis. In: Quantitative Microanalysis with High Spatial Resolution, ed. by G.W. Lorimer, M.H. Jacobs, P. Doigt (The Metals Soc, London 1981) p. 41Google Scholar
  121. V.J. Keast, D.B. Williams: Quantification of boundary segregation in the analytical electron microscope, J. Microsc. 199, 45 (2000)Google Scholar
  122. K. Nakata, O. Okada, Y. Ueki: Measurement of electron beam broadening in stainless steels during EDS analysis in the FEG-TEM, J. Electron Microsc. 50, 89 (2001)Google Scholar
  123. P. Doigt, P.E.J. Flewitt: The detection of monolayer grain boundary segregations in steels using STEM-EDS x-ray microanalysis, Met. Trans. A 13, 1397 (1982)Google Scholar
  124. V.J. Keast, D.B. Williams: Quantitative compositional mapping of Bi segregation to grain boundaries in Cu, Acta Mater. 47, 3999 (1999)Google Scholar
  125. V.J. Keast, J. Bruley, P. Rez, J.M. MacLaren, D.B. Williams: Chemistry and bonding changes associated with the segregation of Bi to grain boundaries in Cu, Acta Mater. 46, 481 (1998)Google Scholar
  126. M. Watanabe, D.B. Williams: X-ray analysis in the AEM with angstrom-level spatial resolution and single-atom, Microsc. Microanal. 11(Suppl. 2), 1362–2005 (2005)Google Scholar
  127. O.L. Krivanek, P.D. Nellist, N. Dellby, M.F. Murfitt, Z. Szilagyi: Towards sub-0.5 Å electron beams, Ultramicroscopy 96, 229 (2003)Google Scholar
  128. P.E. Batson, N. Dellby, O.L. Krivanek: Sub-ȧngstrom resolution using aberration corrected electron optics, Nature 418, 617 (2002)Google Scholar
  129. L.M. Brown: Electron energy loss spectroscopy in the electron microscope. In: Impact of Electron and Scanning Probe Microscopy on Materials Research, ed. by D.G. Rickerby, G. Valdré, U. Valdré (Kluwer Academic, London 1999) pp. 231–249Google Scholar
  130. S.J. Pennycook: High resolution electron microscopy and microanalysis, Contemp. Phys. 23, 371 (1982)Google Scholar
  131. S.J. Pennycook, D.E. Jesson, A.J. McGibbon, P.D. Nellist: High angle dark field STEM for advanced materials, J. Electron Microsc. 45, 36 (1996)Google Scholar
  132. D.A. Muller, J. Silcox: Delocalization in inelastic scattering, Ultramicroscopy 59, 195 (1995)Google Scholar
  133. H. Kohl, H. Rose: Theory of image foundation by inelastically scattered electrons in the electron microscope, Adv. Electron. Electron Phys. 65, 173–227 (1985)Google Scholar
  134. R.F. Egerton: Spatial resolution of nanostructural analysis by electron energy-loss spectroscopy and energy-filtered imaging, J. Electron Microsc. 48, 711 (1999)Google Scholar
  135. M.P. Oxley, E.C. Cosgriff, L.J. Allen: Nonlocality in imaging, Phys. Rev. Lett. 94, 203906 (2005)Google Scholar
  136. E.C. Cosgriff, M.P. Oxley, L.J. Allen, S.J. Pennycook: The spatial resolution of imaging using core-loss spectroscopy in the scanning transmission electron microscope, Ultramicroscopy 102, 317 (2005)Google Scholar
  137. C. Dwyer: Multislice theory of fast electron scattering incorporating atomic inner-shell ionization, Ultramicroscopy 104, 141 (2005)Google Scholar
  138. D.O. Klenov, J.M. Zide: Structure of the InAlAs/InP interface by atomically resolved energy dispersive spectroscopy, Appl. Phys. Lett. 99(14), 141904 (2011)Google Scholar
  139. J.C.H. Spence, J. Lynch: STEM microanalysis by transmission electron energy loss spectroscopy in crystals, Ultramicroscopy 9, 267 (1982)Google Scholar
  140. F. Hofer, W. Grogger, P. Warbichler, I. Papst: Quantitative energy-filtering transmission electron microscopy (EFTEM), Microchim. Acta 132(2–4), 273–288 (2000)Google Scholar
  141. D.B. Williams, M. Watanabe, A.J. Papworth, J.C. Li: Quantitative characterization of the composition, thickness and orientation of thin films in the analytical electron microscope, Thin Solid Films 424, 50 (2003)Google Scholar
  142. M. Watanabe, Z. Horita, M. Nemoto: Absorption correction and thickness determination using the $$\zeta$$ factor in quantitative x-ray microanalysis, Ultramicroscopy 65, 187 (1996)Google Scholar
  143. M. Watanabe, D.B. Williams: The new form of the \(\zeta\)-factor method for quantitative microanalysis in AEM-XEDS and its evaluation, Microsc. Microanal. 5, 88 (1999)Google Scholar
  144. P. Kotula, M.R. Kennan, J.R. Michael: Automated analysis of SEM x-ray spectral images: A powerful new microanalysis tool, Microsc. Microanal. 9, 1 (2003)Google Scholar
  145. P. Kotula, J.R. Michael, M.R. Kennan: Automated analysis of x-ray spectrum images from the STEM, Microsc. Microanal. 7, 198 (2001)Google Scholar
  146. J.M. Titchmarsh, S. Dumbill: Multivariate statistical analysis of FEG-STEM EDX spectra, J. Microsc. 184, 195 (1996)Google Scholar
  147. E.J.A. Chevalier, G.A. Botton: Application of multivariate statistical analysis to complex grain boundary microstructures. In: EMAG 99, Inst. Phys. Conf. Ser., Vol. 161, ed. by C.J. Kiely (Institute of Physics, Bristol 1999) pp. 175–178Google Scholar
  148. F. Hofer, P. Warbichler: Elemental mapping using energy filtered imaging. In: Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS Atlas, 2nd edn., ed. by C.C. Ahn (Wiley-VCH, Weinheim 2004) pp. 159–222Google Scholar
  149. J. Verbeeck, D. Van Dyck, G. Van Tandeloo: Energy-filtered transmission electron microscopy: An overview, Spectrochim. Acta B 59, 1529 (2004)Google Scholar
  150. O.L. Krivanek, D.N. Bui, D.A. Ray, C.B. Boothroyd, C.J. Humphreys: An imaging filter for a 100 kV dedicated STEM. In: Proc. 13th Int. Electron Microsc. Congr (Les Editions de Physique, Les Ulis, Paris 1994) p. 167Google Scholar
  151. J.-L. Lavergne, J.-M. Martin, M. Belin: Interactive electron energy-loss elemental mapping by the ‘‘imaging-spectrum'' method, Microsc. Microanal. Microstruct. 3, 517 (1992)Google Scholar
  152. J. Mayer, U. Eigenthaler, J.M. Plitzko, F. Dettenwanger: Quantitative analysis of electron spectroscopic imaging series, Micron 28, 361 (1997)Google Scholar
  153. P.J. Thomas, P.A. Midgley: Image spectroscopy: II. The removal of plural scattering from extended energy-filtered series by Fourier deconvolution, Ultramicroscopy 88, 187–194 (2001)Google Scholar
  154. P.J. Thomas, P.A. Midgley: Image-spectroscopy: I. The advantages of increased spectral information for compositional EFTEM analysis, Ultramicroscopy 88, 179–186 (2001)Google Scholar
  155. B. Schaffer, W. Grogger, G. Kothleithner: Automated spatial drift correction for EFTEM image series, Ultramicroscopy 102, 27 (2004)Google Scholar
  156. F. Hofer, B. Schaffer, W. Grogger, G. Kothleithner: New developments in energy-filtering transmission electron microscopy, Microsc. Microanal. 11(suppl. 2), 48 (2005)Google Scholar
  157. D.A. Muller, Y. Tzou, R. Raj, J. Silcox: Mapping sp2 and sp3 states of carbon at sub-nanometre spatial resolution, Nature 366, 725 (1993)Google Scholar
  158. G.A. Botton, M.W. Phaneuf: Imaging, spectroscopy and spectroscopic imaging with an energy filtered field emission TEM, Micron 30, 109 (1999)Google Scholar
  159. P. Bayle-Guillemaud, G. Radtke, M. Sennour: Electron spectroscopy imaging to study ELNES at a nanoscale, J. Microsc. 210, 66 (2003)Google Scholar
  160. A.P. Hitchcock, C. Morin, X.R. Zhang, T. Araki, J. Dynes, H. Stover, J. Brash, J.R. Lawrence, G.R. Leppard: Soft x-ray spectromicroscopy of biological and synthetic polymer systems, J. Electron Spectrosc. Relat. Phenom. 144, 259 (2005)Google Scholar
  161. C. Jeanguillaume, C. Colliex: Spectrum-image: The next step in EELS digital acquisition and processing, Ultramicroscopy 28, 252 (1989)Google Scholar
  162. J.A. Hunt, D.B. Williams: Electron energy-loss spectrum-imaging, Ultramicroscopy 38, 47 (1991)Google Scholar
  163. G.A. Botton, G. L'Espérance: Development, quantitative performance and applications of a parallel electron energy-loss spectrum imaging system, J. Microsc. 173, 9 (1994)Google Scholar
  164. C. Colliex, M. Tencé, C. Mory, H. Gu, D. Bouchet, C. Jeanguillaume: Electron energy loss spectrometry mapping, Microchim. Acta 114, 71 (1994)Google Scholar
  165. S.Q. Sun, S.L. Shi, J.A. Hunt, R.D. Leapman: Quantitative water mapping of cryosectioned cells by electron energy-loss spectroscopy, J. Microsc. 177, 18 (1995)Google Scholar
  166. J.A. Hunt, M.M. Disko, S.K. Behal, R.D. Leapman: Electron energy-loss chemical imaging of polymer phases, Ultramicroscopy 58, 55 (1995)Google Scholar
  167. W. Sigle, S. Kramer, V. Varshney, A. Zern, U. Eigenthaler, M. Rühle: Plasmon energy mapping in energy-filtering electron microscopy, Ultramicroscopy 96, 565 (2003)Google Scholar
  168. M. Boniface, L.J. Quazugue, J. Danet, D. Guyomard, P. Moreau, P. Bayle-Guillemaud: Nanoscale chemical evolution of silicon negative electrodes characterized by low-loss STEM-EELS, Nano Lett. 16(12), 7381–7388 (2016)Google Scholar
  169. A. Yurtserver, M. Weyland, D.A. Muller: Three-dimensional imaging of nonspherical silicon nanoparticles embedded in silicon oxide by plasmon tomography, Appl. Phys. Lett. 89, 151920 (2006)Google Scholar
  170. N. Bonnet, N. Brun, C. Colliex: Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis, Ultramicroscopy 77, 97 (1999)Google Scholar
  171. F. Hofer, W. Grogger, G. Kothleitner, P. Warbichler: Quantitative analysis of EFTEM elemental distribution images, Ultramicroscopy 67, 83 (1997)Google Scholar
  172. G. Kothleitner, F. Hofer: Elemental occurrence maps: A starting point for quantitative EELS spectrum image processing, Ultramicroscopy 96, 491 (2003)Google Scholar
  173. F. Hofer, P. Warbichler: Improved imaging of secondary phases in solids by energy-filtering TEM, Ultramicroscopy 63, 21 (1996)Google Scholar
  174. G.J.C. Carpenter: Plasmon-ratio imaging: A technique for enhancing the contrast of second phases with reduced diffraction contrast in TEM micrographs, Microsc. Microanal. 10, 435 (2004)Google Scholar
  175. G. Kothleitner, F. Hofer: Optimization of the signal to noise ratio in EFTEM elemental maps with regard to different ionization edge types, Micron 29, 349 (1998)Google Scholar
  176. W. Grogger, B. Schaffer, K.M. Krishnan, F. Hofer: Energy-filtering TEM at high magnification: Spatial resolution and detection limits, Ultramicroscopy 96, 481 (2003)Google Scholar
  177. A. Berger, H. Kohl: Elemental mapping using an imaging energy filter: Image formation and resolution limits, Microsc. Microanal. Microstruct. 3, 159 (1992)Google Scholar
  178. A. Berger, H. Kohl: Optimum imaging parameters for elemental mapping in an energy filtering transmission electron microscope, Optik 92, 175 (1993)Google Scholar
  179. A. Berger, J. Mayer, H. Kohl: Detection limits in elemental distribution images produced by energy filtering TEM case study of grain boundaries in Si3N4, Ultramicroscopy 55, 101 (1994)Google Scholar
  180. J. Scott, P.J. Thomas, M. MacKenzie, S. McFadzean, J. Wilbrink, A.J. Craven, W.A.P. Nicholson: Near-simultaneous dual energy range EELS spectrum imaging, Ultramicroscopy 108(12), 1586–1594 (2008)Google Scholar
  181. J. Angseryd, M. Albu, H. Andren, G. Kothleitner: A quantitative analysis of a multi-phase polycrystalline cubic boron nitride tool material using DualEELS, Micron 2011(42), 608–615 (2011)Google Scholar
  182. O.L. Krivanek, M.K. Kundmann, K. Kimoto: Spatial resolution in EFETM elemental maps, J. Microsc. 180, 277 (1995)Google Scholar
  183. W. Grogger, M. Varela, R. Ristau, B. Schaffer, F. Hofer, K.M. Krishnan: Energy-filtering transmission electron microscopy on the nanometer length scale, J. Electron Spectrosc. Relat. Phenom. 143, 139 (2005)Google Scholar
  184. Y. Zhu, M. Niewczas, M. Couillard, G.A. Botton: Single atomic layer detection of Ca and defect characterization of Bi-2212 with EELS and HA-ADF STEM, Ultramicroscopy 106, 1076 (2006)Google Scholar
  185. A. Rose: Quantum limitations to vision at low light levels, Image Technol. 12, 1315 (1970)Google Scholar
  186. T.O. Ziebold: Precision and sensitivity in electron microprobe analysis, Anal. Chem. 39, 858 (1967)Google Scholar
  187. R.F. Egerton, S.C. Cheng: Characterization of an analytical electron microscope with a NiO test specimen, Ultramicroscopy 55, 43 (1994)Google Scholar
  188. P. Trebbia: Unbiased method for signal estimation in electron energy loss spectroscopy, concentration measurements and detection limits in quantitative microanalysis: Methods and programs, Ultramicroscopy 24, 399 (1988)Google Scholar
  189. O.L. Krivanek, C. Mory, M. Tencé, C. Colliex: EELS quantification near the single-atom detection level, Microsc. Microanal. Microstruct. 2, 257 (1991)Google Scholar
  190. K. Suenaga, M. Tencé, C. Mory, C. Colliex, T. Okazaki, H. Shinohara, K. Hirahara, S. Bandow, S. Iijima: Element-selective single atom imaging, Science 290, 2280 (2000)Google Scholar
  191. R.D. Leapman, N.W. Rizzo: Towards single atom analysis of biological structures, Ultramicroscopy 78, 251 (1999)Google Scholar
  192. R.D. Leapman: Detecting single atoms of calcium and iron in biological structures by electron energy-loss spectrum-imaging, J. Microsc. 210, 5 (2003)Google Scholar
  193. D.E. Newbury: Trace element detection at nanometer scale spatial resolution, J. Electron Microsc. 47, 407 (1998)Google Scholar
  194. D.E. Newbury, D.A. Wollman, G.C. Hilton, K.D. Irwin, N.F. Bergren, D.A. Rudman, J.M. Martinis: The approaching revolution in x-ray microanalysis: The microcalorimeter energy dispersive spectrometer, J. Radioanal. Nucl. Chem. 244, 627 (2000)Google Scholar
  195. M.K.H. Natusch, C.J. Humphreys, N. Menon, O.L. Krivanek: Experimental and theoretical study of the detection limits in electron energy-loss spectroscopy, Micron 30, 173 (1999)Google Scholar
  196. N. Menon, O.L. Krivanek: Synthesis of electron energy loss spectra for the quantification of detection limits, Microsc. Microanal. 8, 203 (2002)Google Scholar
  197. L.A.J. Garvie, A.J. Craven, R. Brydson: Use of electron-energy loss near-edge fine structure in the study of minerals, Am. Mineral. 79, 411 (1994)Google Scholar
  198. J.G. Chen: NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides and other interstitial compounds, Surface Sci. Rep. 30, 1 (1997)Google Scholar
  199. J.L. Mansot, P. Leone, P. Euzen, P. Pavaldeau: Valence of manganese in a new oxybromide compound, determined by means of electron energy-loss spectroscopy, Microsc. Microanal. Microstruct. 5, 79 (1994)Google Scholar
  200. G.A. Botton: EELS near edge structures. In: Impact of Electron and Scanning Probe Microscopy on Materials Research, ed. by D.G. Rickerby, G. Valdré, U. Valdré (Kluwer Academic, London 1999) p. 265Google Scholar
  201. G. Radtke, G.A. Botton: Electron energy loss near-edge structures. In: Scanning Transmission Electron Microscopy, ed. by S.J. Pennycook, P.D. Nellist (Springer, Berlin 2011) pp. 207–245Google Scholar
  202. V.J. Keast, A.J. Scott, R. Brydson, D.B. Williams, J. Bruley: Electron energy-loss near-edge structure—A tool for the investigation of electronic structure on the nanometre scale, J. Microsc. 203, 135 (2001)Google Scholar
  203. P.E. Batson: Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity, Nature 366, 727 (1993)Google Scholar
  204. D.A. Muller, T. Sorch, S. Moccio, F.H. Baumann, K. Evans-Luttertodt, G. Timp: The electronic structure at the atomic scale of ultrathin gate oxides, Nature 399, 758 (1999)Google Scholar
  205. D.A. Muller, N. Nakagawa, A. Ohtomo, J.L. Grazul, H.Y. Hwang: Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3, Nature 430, 657 (2004)Google Scholar
  206. M. Bugnet, S. Loffler, D. Hawthorn, H.A. Dabkowska, G.M. Luke, P. Schattschneider, G.A. Sawatzky, G. Radtke, G.A. Botton: Real-space localization and quantification of hole distribution in chain-ladder Sr3Ca11Cu24O41 superconductor, Sci. Adv. 2(3), e1501652 (2016)Google Scholar
  207. M. Bugnet, G. Radtke, S.Y. Woo, G.Z. Zhu, G.A. Botton: Temperature-dependent high energy-resolution EELS of ferroelectric and paraelectric BaTiO3 phases, Phys. Rev. B 93, 020102 (2016)Google Scholar
  208. M. Bugnet, G. Radtke, G.A. Botton: Oxygen 1s excitation and tetragonal distortion from core-hole effect in BaTiO3, Phys. Rev. B 88, 201107 (2013)Google Scholar
  209. G.Z. Zhu, G. Radtke, G.A. Botton: Bonding and structure of a reconstructed (001) surface of SrTiO3 from TEM, Nature 490(7420), 384–387 (2012)Google Scholar
  210. G.Z. Zhu, G.A. Botton: A ‘‘thickness series'': Weak signal extraction of ELNES in EELS spectra from surfaces, Microsc. Microanal. 20, 649–657 (2014)Google Scholar
  211. S. Löffler, M. Bugnet, N. Gauquelin, S. Lazar, E. Assmann, K. Held, G.A. Botton, P. Schattschneider: Real-space mapping of electronic orbitals, Ultramicroscopy 177, 26–29 (2017)Google Scholar
  212. A.T. Paxton: Theory of the near K-edge structure in electron energy loss spectroscopy, J. Electron Spectrosc. Relat. Phenom. 143, 51 (2005)Google Scholar
  213. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz: Wien2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Inst. of Physical and Theoretical Chemistry, Vienna Univ. of Technology, Vienna 2001)Google Scholar
  214. J. Fink: Transmission electron energy-loss spectroscopy. In: Unoccupied Electronic States, ed. by J.C. Fuggle, J.E. Inglesfield (Springer, Berlin 1992) pp. 203–241Google Scholar
  215. D.D. Vvedensky: Theory of x-ray absorption fine structure. In: Unoccupied Electronic States, ed. by J.C. Fuggle, J.E. Inglesfield (Springer, Berlin 1992) p. 138Google Scholar
  216. D.K. Saldin: The theory of electron energy-loss near-edge structure, Philos. Mag. B 25, 515 (1987)Google Scholar
  217. P. Schattschneider, B. Jouffrey: Plasmons and related excitations. In: Energy Filtering Transmission Electron Microscopy, ed. by L. Reimer (Springer, Heidelberg 1995) pp. 151–224Google Scholar
  218. U. von Barth, G. Grossman: Dynamical effects in x-ray spectra and the final-state rule, Phys. Rev. B 25, 5150 (1982)Google Scholar
  219. C. Hebert: Practical aspects of running the WIEN2k code for electron spectroscopy, Micron 38, 12–28 (2007)Google Scholar
  220. G.A. Botton, G.Y. Guo, W.M. Temmerman, C.J. Humphreys: Electron energy loss spectroscopy as a tool to probe the electronic structure in intermetallic alloys. In: Properties of Complex Inorganic Solids, ed. by A. Gonis, A. Meike, P. Turchi (Plenum, New York 1997) pp. 175–180Google Scholar
  221. A.L. Ankudinov, B. Ravel, J.J. Rehr, S.D. Conradson: Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure, Phys. Rev. B 58, 7565 (1998)Google Scholar
  222. C.J. Pickard, M.C. Payne: Ab initio EELS beyond the fingerprint. In: Electron Microscopy and Analysis, Inst. Phys. Conf. Ser., Vol. 153 (Institute of Physics, Bristol 1997) pp. 179–182Google Scholar
  223. F.M.F. de Groot: X-ray absorption and dichroism of transition metals and their compounds, J. Electron Spectrosc. Relat. Phenom. 67, 529–622 (1994)Google Scholar
  224. F.M.F. de Groot: Multiplet effects in x-ray spectroscopy, Coord. Chem. Rev. 249, 31 (2005)Google Scholar
  225. P. Rez, J. Bruley, P. Brohan, M. Payne, L.A.J. Garvie: Review of methods for calculating near edge structure, Ultramicroscopy 59, 159 (1995)Google Scholar
  226. J. Fink: Recent developments in energy-loss spectroscopy, Adv. Electron. Electron Phys. 75, 121 (1989)Google Scholar
  227. G. Radtke, T. Epicier, P. Bayle-Guillemaud, J.C. Le Bosse: N-K ELNES study of anisotropy effects in hexagonal AlN, J. Microsc. 210, 60 (2003)Google Scholar
  228. G.A. Botton, C.B. Boothroyd, W.M. Stobbs: Momentum-dependent energy-loss near-edge structures using a CTEM—The reliability of the methods available, Ultramicroscopy 59, 93 (1995)Google Scholar
  229. B. Jouffrey, P. Schattschneider, C. Hebert: The magic angle: A solved mystery, Ultramicroscopy 102, 61 (2004)Google Scholar
  230. G.A. Botton: A new project to study bonding anisotropy with EELS, J. Electron Spectrosc. Relat. Phenom. 143(2/3), 129–137 (2005)Google Scholar
  231. G. Radtke, G.A. Botton, J. Verbeeck: Electron inelastic scattering and anisotropy: The two-dimensional point of view, Ultramicroscopy 106, 1082–1090 (2006)Google Scholar
  232. P. Ewels, T. Sikora, V. Serin, C.P. Ewels, L. Lajaunie: A complete overhaul of the electron energy-loss spectroscopy and x-ray absorption spectroscopy database:, Microsc. Microanal. 22, 717–724 (2016)Google Scholar
  233. D. Muller: WEELS—Websource for electron energy loss spectra. (2019)
  234. H. Raether: Excitations of Plasmons and Interband Transitions by Electrons (Springer, New York 1980)Google Scholar
  235. C. Colliex: Electron energy-loss spectroscopy in the electron microscope. In: Advances in Optical and Electron Microscopy, Vol. 9, ed. by V.E. Cosslett, R. Barer (Academic Press, London 1984) p. 65Google Scholar
  236. M.A. Turowski, T.F. Kelly: Profiling of the dielectric function across Al/SiO2/Si heterostructures with electron energy loss spectroscopy, Ultramicroscopy 41, 41 (1992)Google Scholar
  237. S. Schamm, G. Zanchi: Study of the dielectric properties near the band gap by VEELS: Gap measurement in bulk materials, Ultramicroscopy 96, 559 (2003)Google Scholar
  238. H. Müllejans, R.H. French: Insights into the electronic structure of ceramics through quantitative analysis of valence electron energy-loss spectroscopy, Microsc. Microanal. 6, 297 (2000)Google Scholar
  239. F. Wooten: Optical Properties of Solids (Academic Press, New York 1972)Google Scholar
  240. P. Moreau, M.C. Cheynet: Improved comparison of low energy loss spectra with band structure calculations: The example of BN filaments, Ultramicroscopy 94, 293 (2003)Google Scholar
  241. M. Launay, F. Boucher, P. Moreau: Evidence of a rutile-phase characteristic peak in low-energy loss spectra, Phys. Rev. B 69, 03101 (2004)Google Scholar
  242. V.J. Keast: Ab initio calculations of plasmons and interband transitions in the low-loss electron energy-loss spectrum, J. Electron Spectrosc. Relat. Phenom. 143, 97 (2005)Google Scholar
  243. G.A. Botton, G. L'Espérance, C.E. Gallerneault, M.D. Ball: Volume fraction measurement of dispersoids in a thin foil by parallel energy-loss spectroscopy: Development and assessment of the technique, J. Microsc. 180, 217 (1995)Google Scholar
  244. T. Malis, S.C. Cheng, R.F. Egerton: EELS log-ratio technique for specimen-thickness measurement in the TEM, J. Electron Microsc. Tech. 8, 193 (1988)Google Scholar
  245. Y.Y. Yang, R.F. Egerton: Tests of two alternative methods for measuring specimen thickness in a transmission electron microscope, Micron 26, 1 (1995)Google Scholar
  246. D.W. Johnson, J.C.H. Spence: Determination of the scattering probability distribution from plural scattering data, J. Phys. D 7(6), 771 (1974)Google Scholar
  247. R.F. Egerton, S.C. Cheng: Measurement of local thickness by electron energy-loss spectroscopy, Ultramicroscopy 21, 231 (1987)Google Scholar
  248. L. Gu, V. Srot, W. Sigle, C. Koch, P. van Aken, F. Scholz, S.B. Thapa, C. Kirchner, M. Jetter, M. Rühle: Band-gap measurements of direct and indirect semiconductors using monochromated electrons, Phys. Rev. B 75, 195214 (2007)Google Scholar
  249. M. Horák, M. Stöger-Pollach: The Čerenkov limit of Si, GaAs and GaP in electron energy loss spectrometry, Ultramicroscopy 157, 73–78 (2015)Google Scholar
  250. M. Stöger-Pollach, H. Franco, P. Schattschneider, B. Lazar, B. Schaffer, W. Grogger, H.W. Zandbergen: Cerenkov losses: A limit for bandgap determination and Kramers–Kronig analysis, Micron 37, 396–402 (2006)Google Scholar
  251. M. Stöger-Pollach: Low voltage TEM: Influences on electron energy loss spectrometry experiments, Micron 41, 577–584 (2010)Google Scholar
  252. M. Stöger-Pollach: Low voltage EELS—How low?, Ultramicroscopy 145, 98–104 (2014)Google Scholar
  253. J. Nelayah, M. Kociak, O. Stephan, F.J. Garcia de Abajo, M. Tence, L. Henrard, D. Taverna, I. Pastoriza-Santos, L.M. Liz-Marzan, C. Colliex: Mapping surface plasmons on a single metallic nanoparticle, Nat. Phys. 3, 348 (2007)Google Scholar
  254. M. Bosman, V.J. Keast, M. Watanabe, A.I. Maaroof, M.B. Cortie: Mapping surface plasmons at the nanometre scale with an electron beam, Nanotechnology 18, 165505 (2007)Google Scholar
  255. D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, G.A. Botton: Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe, Nano Lett. 11, 1499 (2011)Google Scholar
  256. D. Rossouw, G.A. Botton: Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding, Phys. Rev. Lett. 110, 066801 (2013)Google Scholar
  257. F.J. Garcia de Abajo, M. Kociak: Probing the photonic local density of states with electron energy loss spectroscopy, Phys. Rev. Lett. 100, 106804 (2008)Google Scholar
  258. F.J. Garcia de Abajo: Optical excitations in electron microscopy, Rev. Mod. Phys. 82, 209 (2010)Google Scholar
  259. E.P. Bellido, A. Manjavacas, Y. Zhang, Y. Cao, P. Nordlander, G.A. Botton: Electron energy-loss spectroscopy of multipolar edge and cavity modes in silver nanosquares, ACS Photonics 3, 428–433 (2016)Google Scholar
  260. E.P. Bellido, Y. Zhang, A. Manjavacas, P. Nordlander, G.A. Botton: Plasmonic coupling of multipolar edge modes and the formation of gap modes, ACS Photonics 4, 1558–1565 (2017)Google Scholar
  261. E.P. Bellido, G.D. Bernasconi, D. Rossouw, J. Butet, O.J.F. Martin, G.A. Botton: Self-similarity of plasmon edge modes on Koch fractal antennas, ACS Nano 11, 11240–11249 (2017)Google Scholar
  262. O.L. Krivanek, T.C. Lovejoy, N. Dellby, T. Aoki, R.W. Carpenter, P. Rez, R.F. Egerton: Vibrational spectroscopy in the electron microscope, Nature 514(7521), 209–212 (2014)Google Scholar
  263. M.J. Lagos, A. Trügler, U. Hohenester, E. Philip, P.E. Batson: Mapping vibrational surface and bulk modes in a single nanocube, Nature 543, 529 (2017)Google Scholar
  264. L.J. Allen, S.D. Findlay, A.R. Lupini, M.P. Oxley, S.J. Pennycook: Atomic-resolution electron energy loss spectroscopy imaging in aberration corrected scanning transmission electron microscopy, Phys. Rev. Lett. 91(10), 105503 (2003)Google Scholar
  265. A. Gloter, V. Badjeck, L. Bocher, N. Brun, K. March, M. Marinova, M. Tence, M. Walls, S.O. Zobelli, C. Colliex: Atomically resolved mapping of EELS fine structures, Mater. Sci. Semicond. Process. 65, 2–17 (2017)Google Scholar
  266. K. Suenaga, Y. Sato, Z. Liu, H. Kataura, T. Okazaki, K. Kimoto, H. Sawada, T. Sasaki, K. Omoto, T. Tomita, T. Kaneyama, Y. Kondo: Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage, Nat. Chem. 1(5), 415–418 (2009)Google Scholar
  267. O.L. Krivanek, M.F. Chisholm, V. Nicolosi, T.J. Pennycook, G.J. Corbin, N. Dellby, S.T. Pantelides: Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy, Nature 464(7288), 571–574 (2010)Google Scholar
  268. Y.C. Lin, P.Y. Teng, P.W. Chiu, K. Suenaga: Exploring the single atom spin state by electron spectroscopy, Phys. Rev. Lett. 115(20), 206803 (2015)Google Scholar
  269. N. Gauquelin, E. Benckiser, M.K. Kinyanjui, M. Wu, Y. Lu, G. Christiani, G. Logvenov, H.U. Habermeier, U. Kaiser, B. Keimer, G.A. Botton: Atomically resolved EELS mapping of the interfacial structure of epitaxially strained LaNiO3/LaAlO3 superlattices, Phys. Rev. B 90(19), 195140 (2014)Google Scholar
  270. N. Gauquelin, D.G. Hawthorn, G.A. Sawatzky, R.X. Liang, D.A. Bonn, W.N. Hardy, G.A. Botton: Atomic scale real-space mapping of holes in YBa2Cu3O\(_{6+\delta}\), Nat. Commun. 5, 4275 (2014)Google Scholar
  271. H.L. Xin, C. Dwyer, D.A. Muller: Is there a Stobbs factor in atomic-resolution STEM-EELS mapping?, Ultramicroscopy 139, 38–46 (2014)Google Scholar
  272. K. Suenaga, M. Koshino: Atom-by-atom spectroscopy at graphene edge, Nature 468(7327), 1088–1090 (2010)Google Scholar
  273. Q.M. Ramasse, C.R. Seabourne, D.M. Kepaptsoglou, R. Zan, U. Bangert, A.J. Scott: Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy, Nano Lett. 13(10), 4989–4995 (2013)Google Scholar
  274. T.C. Lovejoy, Q.M. Ramasse, M. Falke, A. Kaeppel, R. Terborg, R. Zan, O.L. Krivanek: Single atom identification by energy dispersive x-ray spectroscopy, Appl. Phys. Lett. 100(15), 154101 (2012)Google Scholar
  275. A.J. d'Alfonso, B. Freitag, D. Klenov, L.J. Allen: Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy, Phys. Rev. B 81(10), 100101 (2010)Google Scholar
  276. S.D. Findlay, M.P. Oxley, S.J. Pennycook, L.J. Allen: Modelling imaging based on core-loss spectroscopy in scanning transmission electron microscopy, Ultramicroscopy 104(2), 126–140 (2005)Google Scholar
  277. P. Longo, T. Topuria, P. Rice, A. Aitouchen, P.J. Thomas, R.D. Twesten: Simultaneous high-speed DualEELS and EDS acquisition at atomic level across the LaFeO3/SrTiO3 interface, Microsc. Microanal. 21(S3), 1857–1858 (2015)Google Scholar
  278. M. Bosman, M. Watanabe, D.T.L. Alexander, V.J. Keast: Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images, Ultramicroscopy 106(11), 1024–1032 (2006)Google Scholar
  279. M. Watanabe: Microscopy hacks: Development of various techniques to assist quantitative nanoanalysis and advanced electron microscopy, Microscopy 62(2), 217–241 (2013)Google Scholar
  280. M. Watanabe, E. Okunishi, K. Ishizuka: Analysis of spectrum-imaging datasets in atomic-resolution electron microscopy, Microsc. Anal. 23, 5 (2009)Google Scholar
  281. F. De La Peña, M.H. Berger, J.F. Hochepied, F. Dynys, O. Stephan, M. Walls: Mapping titanium and tin oxide phases using EELS: An application of independent component analysis, Ultramicroscopy 111(2), 169–176 (2011)Google Scholar
  282. D. Rossouw, R. Krakow, Z. Saghi, C.S. Yeoh, P. Burdet, R.K. Leary, P.A. Midgley: Blind source separation aided characterization of the $$\upgamma$$' strengthening phase in an advanced nickel-based superalloy by spectroscopic 4D electron microscopy, Acta Mater. 107, 229–238 (2016)Google Scholar
  283. D. Rossouw, B. Langelier, A. Scullion, M. Danaie, G.A. Botton: Multivariate-aided mapping of rare-earth partitioning in a wrought magnesium alloy, Scr. Mater. 124, 174–178 (2016)Google Scholar
  284. J.M. Thomas, R.K. Leary, A.S. Eggeman, P.A. Midgley: The rapidly changing face of electron microscopy, Chem. Phys. Lett. 631, 103–113 (2015)Google Scholar
  285. D. Rossouw, L.E. Chinchilla, S. Prabhudev, T. Trefz, N. Kremliakova, G.A. Botton: Machine-learning aided evolution studies of nano-composite electrodes and nano-particle catalysts for fuel cell applications, Microsc. Microanal. 21(suppl. 3), 1063–1065 (2015)Google Scholar
  286. P. Torruella, R. Arenal, F. de la Peña, Z. Saghi, L. Yedra, A. Eljarrat, L. López-Conesa, M. Estrader, A. López-Ortega, G. Salazar-Alvarez, J. Nogués, C. Ducati, P.A. Midgeley, F. Peiró, S. Estradé: 3D visualization of the iron oxidation state in FeO/Fe3O4 core–shell nanocubes from electron energy loss tomography, Nano Lett. 16(8), 5068–5073 (2016)Google Scholar
  287. D. Rossouw, P. Burdet, F. de la Peña, C. Ducati, B.R. Knappett, A.E. Wheatley, P.A. Midgley: Multicomponent signal unmixing from nanoheterostructures: Overcoming the traditional challenges of nanoscale x-ray analysis via machine learning, Nano Lett. 15(4), 2716–2720 (2015)Google Scholar
  288. J.M. Zuo: Electron detection characteristics of a slow-scan CCD camera, imaging plates and film, and electron image restoration, Microsc. Res. Tech. 49(3), 245–268 (2000)Google Scholar
  289. M.W. Tate, P. Purohit, D. Chamberlain, K.X. Nguyen, R. Hovden, C.S. Chang, D.A. Muller, D.C. Ralph: High dynamic range pixel array detector for scanning transmission electron microscopy, Microsc. Microanal. 22(1), 237–249 (2016)Google Scholar
  290. D.A. Muller, K.X. Nguyen, M.W. Tate, P. Purohit, C. Chang, M. Cao, S.M. Gruner: An electron microscope pixel array detector as a universal STEM detector, Microsc. Microanal. 22(S3), 478–479 (2016)Google Scholar
  291. A.R. Faruqi, D.M. Cattermole, R. Henderson, B. Mikulec, C. Raeburn: Evaluation of a hybrid pixel detector for electron microscopy, Ultramicroscopy 94(3), 263–276 (2003)Google Scholar
  292. D. McGrouther, M. Krajnak, I. MacLaren, D. Maneuski, V. O'Shea, P.D. Nellist: Use of a hybrid silicon pixel (Medipix) detector as a STEM detector, Microsc. Microanal. 21, 1595 (2015)Google Scholar
  293. A. Mac Raighne, G.V. Fernandez, D. Maneuski, D. McGrouther, V. O'Shea: Medipix2 as a highly flexible scanning/imaging detector for transmission electron microscopy, J. Instrum. 6(01), C01047 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dept. of Materials Science & EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations