Advertisement

Microcomputed Tomography

  • Angela S.P. Lin
  • Stuart R. Stock
  • Robert E. GuldbergEmail author
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

Since Röntgen discovered x-rays at the end of the nineteenth century and established their usefulness for medical diagnostics imaging, many technological advances have allowed for x-rays to be employed in even more powerful ways. This includes utilizing x-rays for tomographic imaging and quantification.

This chapter describes the principles of microcomputed tomography () and its use in obtaining internal structural and compositional data about materials/objects of interest. The authors introduce this material with a brief history of the development of laboratory and synchrotron microCT for engineering, biology, and biomedical applications.

As will be evident, microCT imaging requires many components to operate together with precision, and the standard microCT subsystems will be described. This chapter will also explain the principles behind x-ray attenuation in materials as well as common methods by which microCT image processing software may handle complex detected data to reconstruct grayscale slice images. The quality of the resulting images relies on a few key factors, including spatial resolution, noise, and contrast, and these concepts will be explained. Additionally, microCT image reconstruction and processing may produce various types of artifacts, and the most common of these artifacts will be discussed.

In a typical microCT imaging workflow, the reconstructed two-dimensional () slice images can subsequently be processed to generate segmentations and three-dimensional () renderings of the material(s) of interest. Because image segmentation and quantification of the material's geometry and composition could be performed via many possible procedures, these processes will be generally discussed within this chapter.

Finally, microCT forms the basis for various novel techniques that are rapidly gaining momentum for use in biology, engineering, and biomedical research applications to provide accurate, non-destructive high-resolution images and quantitative data. Some of these techniques, such as phase contrast CT, dual-energy CT, fluorescence CT, and x-ray scattering tomography, will be introduced and briefly discussed.

References

  1. G.N. Hounsfield: A method of and apparatus for examination of a body by radiation such as X or gamma radiation, United Kingdom Patent 1283915 (1968–1972)Google Scholar
  2. S. Webb: From the Watching of Shadows: The Origins of Radiological Tomography (IOP, Bristol 1990)Google Scholar
  3. D.K. Bowen, J.C. Elliott, S.R. Stock, S.D. Dover: X-ray microtomography with synchrotron radiation, SPIE 691, 94–98 (1986)Google Scholar
  4. J.C. Elliott, S.D. Dover: X-ray microtomography, J. Microsc. 126(2), 211–213 (1982)Google Scholar
  5. J.C. Elliott, S.D. Dover: Three-dimensional distribution of mineral in bone at a resolution of 15 micron determined by x-ray microtomography, Metab. Bone Dis. Relat. Res. 5(5), 219–221 (1984)Google Scholar
  6. L.A. Feldkamp, S.A. Goldstein, A.M. Parfitt, G. Jesion, M. Kleerekoper: The direct examination of three-dimensional bone architecture in vitro by computed tomography, J. Bone Miner. Res. 4(1), 3–11 (1989)Google Scholar
  7. B.P. Flannery, H.W. Deckman, W.G. Roberge, K.L. D'Amico: Three-dimensional x-ray microtomography, Science 237(4821), 1439–1444 (1987)Google Scholar
  8. J.H. Kinney, Q.C. Johnson, U. Bonse, M.C. Nichols, R.A. Saroyan, R. Nusshardt, R. Pahl, J.M. Brase: Three-dimensional x-ray computed tomography in materials science, MRS Bulletin XIII, 13–17 (1988)Google Scholar
  9. J.L. Kuhn, S.A. Goldstein, M.J. Ciarelli, L.S. Matthews: The limitations of canine trabecular bone as a model for human—A biomechanical study, J. Biomech. 22(2), 95–107 (1989)Google Scholar
  10. M.W. Layton, S.A. Goldstein, R.W. Goulet, L.A. Feldkamp, D.J. Kubinski, G.G. Bole: Examination of subchondral bone architecture in experimental osteo-arthritis by microscopic computed axial-tomography, Arthritis Rheum. 31(11), 1400–1405 (1988)Google Scholar
  11. P. Spanne, M.L. Rivers: Computerized microtomography using synchrotron radiation from the NSLS, Nucl. Instrum. Methods Phys. Res. B 24/25, 1063–1067 (1987)Google Scholar
  12. J. Hormes, J. Warner: Industrial use of synchrotron radiation: Love at second sight. In: Industrial Accelerators and Their Applications, ed. by R.W. Hamm, M.E. Hamm (World Scientific Publishing, Hackensack 2012)Google Scholar
  13. The European Synchrotron: European Synchrotron Radiation Facility, http://www.esrf.eu/home.html (2016)
  14. A.L. Robinson: History of synchrotron radiation. In: X-ray Data Booklet, 3rd edn., ed. by A.C. Thompson (Lawrence Berkeley National Laboratory: Center for X-ray Optics Advanced Light Source, Berkeley 2009)Google Scholar
  15. O. Brunke, K. Brockdorf, S. Drews, B. Müller, T. Donath, J. Herzen, F. Beckmann: Comparison between X-ray tube based and synchrotron radiation based \(\upmu\)CT, Proceedings SPIE (2008),  https://doi.org/10.1117/12.794789CrossRefGoogle Scholar
  16. D.C. Copley, J.W. Eberhard, G.A. Mohr: Computed-tomography. 1. Introduction and industrial applications, JOM 46(1), 14–26 (1994)Google Scholar
  17. M.J. Dennis: Industrial computed tomography. In: Nondestructive Evaluation and Quality Control, 2nd edn., ASM Handbook, Vol. 17, ed. by ASM Handbook Committee (ASM International, Materials Park 1989)Google Scholar
  18. A.C. Kak, M. Slaney: Principles of Computerized Tomographic Imaging (IEEE, New York 1988)Google Scholar
  19. E.L. Ritman: Micro-computed tomography-current status and developments, Annu. Rev. Biomed. Eng. 6, 185–208 (2004)Google Scholar
  20. R.H. Bossi, G.E. Georgeson: The application of x-ray computed-tomography to materials development, JOM 43(9), 8–15 (1991)Google Scholar
  21. T.M. Breunig: Nondestructive Evaluation of Damage in SiC/Al Metal/Matrix Composite Using X-ray Tomographic Microscopy (Georgia Institute of Technology, Atlanta 1992)Google Scholar
  22. T.M. Breunig, J.C. Elliott, S.R. Stock, P. Anderson, G.R. Davis, A. Guvenilir: Quantitative characterization of damage in a composite material using x-ray tomographic microscopy. In: X-ray Microscopy III, Vol. 67, ed. by A.G. Michette, G.R. Morrison, C.J. Buckley (Springer, Berlin 1992) pp. 465–468Google Scholar
  23. T.M. Breunig, S.R. Stock, A. Guvenilir, J.C. Elliott, P. Anderson, G.R. Davis: Damage in aligned fibre SiC/Al quantified using a laboratory x-ray tomographic microscope, Composites 24, 209–213 (1993)Google Scholar
  24. M.D. Butts: Nondestructive Examination of Nicalon Fiber Composite Preforms Using X-ray Tomographic Microscopy (Georgia Institute of Technology, Atlanta 1993)Google Scholar
  25. M.D. Butts, S.R. Stock, J.H. Kinney, T.L. Starr, M.C. Nichols, C.A. Lundgren, T.M. Breunig, A. Guvenilir: X-ray tomographic microscopy of Nicalon preforms and chemical vapor infiltrated Nicalon silicon-carbide composites, MRS Proceedings 250, 215–219 (1992)Google Scholar
  26. Y. Cao, T.D. Wu, H. Wu, Y. Lang, D.Z. Li, S.F. Ni, H.B. Lu, J.Z. Hu: Synchrotron radiation micro-CT as a novel tool to evaluate the effect of agomir-210 in a rat spinal cord injury model, Brain Res. 1655, 55–65 (2017)Google Scholar
  27. C.A. Carlsson, G. Matscheko, P. Spanne: Prospects for microcomputerized-tomography using synchrotron radiation, Biol. Trace Elem. Res. 13(1), 209–217 (1987)Google Scholar
  28. L.R.L. Dollar: Evaluation of Nondestructive X-ray Techniques for Electronic Packaging Materials (Georgia Institute of Technology, Atlanta 1992)Google Scholar
  29. J.C. Elliott, P. Anderson, G.R. Davis, F.S.L. Wong, S.D. Dover: Computed-tomography. 2. The practical use of a single-source and detector, JOM 46(3), 11–19 (1994)Google Scholar
  30. G.E. Georgeson, R.H. Bossi: Computed-tomography of advanced materials and processes. In: Nondestr. Eval. Mater. Prop. Adv. Mater.; Proc. Symp. TMS Annu. Meet., New Orleans (1991) pp. 99–108Google Scholar
  31. A. Guvenilir: Investigation into Asperity Induced Closure in an Al-Li Alloy Using X-ray Tomography (Georgia Institute of Technology, Atlanta 1995)Google Scholar
  32. S.B. Lee: Nondestructive Examination of Chemical Vapor Infiltration of 0°/90° SiC/Nicalon Composites (Georgia Institute of Technology, Atlanta 1993)Google Scholar
  33. C.L. Lin, A.R. Videla, Q. Yu, J.D. Miller: Characterization and analysis of porous, brittle solid structures by x-ray micro computed tomography, JOM 62(12), 86–89 (2010)Google Scholar
  34. R. Morano: Effect of R-Ratio on Crack Closure in Al-Li 2090 T8E41, Investigated Non-Destructively with X-Ray Micro-Tomography (Georgia Institute of Technology, Atlanta 1998)Google Scholar
  35. S.R. Stock: X-ray microtomography of materials, Int. Mater. Rev. 44(4), 141–164 (1999)Google Scholar
  36. S.R. Stock, A. Guvenilir, T.M. Breunig, J.H. Kinney, M.C. Nichols: Computed-tomography. 3. Volumetric, high-resolution x-ray-analysis of fatigue-crack closure, JOM 47(1), 19–23 (1995)Google Scholar
  37. T. Winkler, X.Y. Dai, G. Mielke, S. Vogt, H. Buechner, J.T. Schantz, Y. Harder, H.G. Machens, M.M. Morlock, A.F. Schilling: Three-dimensional quantification of calcium salt-composite resorption (CSC) in vitro by micro-computed tomography (micro-CT), JOM 66(4), 559–565 (2014)Google Scholar
  38. A.S. Lin, T.H. Barrows, S.H. Cartmell, R.E. Guldberg: Microarchitectural and mechanical characterization of oriented porous polymer scaffolds, Biomaterials 24(3), 481–489 (2003)Google Scholar
  39. S.J. Hollister, R.A. Levy, T.M. Chu, J.W. Halloran, S.E. Feinberg: An image-based approach for designing and manufacturing craniofacial scaffolds, Int. J. Oral Maxillofac. Surg. 29(1), 67–71 (2000)Google Scholar
  40. A. Hasan, K.A. Alshibli: Experimental assessment of 3D particle-to-particle interaction within sheared sand using synchrotron microtomography, Geotechnique 60(5), 369–379 (2010)Google Scholar
  41. D.L. Safranski, J.M. Boothby, C.N. Kelly, K. Beatty, N. Lakhera, C.P. Frick, A. Lin, R.E. Guldberg, J.C. Griffis: Thermo-mechanical behavior and structure of melt blown shape-memory polyurethane nonwovens, J. Mech. Behav. Biomed. Mater. 62, 545–555 (2016)Google Scholar
  42. P. Verma, M.L. Shofner, A. Lin, K.B. Wagner, A.C. Griffin: Induction of auxetic response in needle-punched nonwovens: Effects of temperature, pressure, and time, Phys. Status Solidi (b) 253(7), 1270–1278 (2016)Google Scholar
  43. S. Bayat, L. Apostol, E. Boller, T. Brochard, F. Peyrin: In vivo imaging of bone micro-architecture in mice with 3D synchrotron radiation micro-tomography, Nucl. Instrum. Methods Phys. Res. A 548, 247–252 (2005)Google Scholar
  44. S. Cartmell, K. Huynh, A. Lin, S. Nagaraja, R. Guldberg: Quantitative microcomputed tomography analysis of mineralization within three-dimensional scaffolds in vitro, J. Biomed. Mater. Res. A 69(1), 97–104 (2004)Google Scholar
  45. G.T. Charras: Digital Image-Based Finite Element Modeling (DIBFEM): Validation and Application to Biological Structures (Georgia Institute of Technology, Atlanta 1998)Google Scholar
  46. D.W. Dempster, R. Lindsay: Pathogenesis of osteoporosis, Lancet 341(8848), 797–801 (1993)Google Scholar
  47. M. Ding, A. Odgaard, I. Hvid: Accuracy of cancellous bone volume fraction measured by micro-CT scanning, J. Biomech. 32(3), 323–326 (1999)Google Scholar
  48. M. Ding, A. Odgaard, F. Linde, I. Hvid: Age-related variations in the microstructure of human tibial cancellous bone, J. Orthop. Res. 20(3), 615–621 (2002)Google Scholar
  49. K. Engelke, C.C. Gluer, H.K. Genant: Structural and fractal analyses of the trabecular network using micro-computed tomography images, J. Bone Miner. Res. 8, S354 (1993)Google Scholar
  50. K. Engelke, W. Graeff, L. Meiss, M. Hahn, G. Delling: High spatial-resolution imaging of bone-mineral using computed microtomography—Comparison with microradiography and undecalcified histologic sections, Invest. Radiol. 28(4), 341–349 (1993)Google Scholar
  51. R.W. Goulet, S.A. Goldstein, M.J. Ciarelli, J.L. Kuhn, M.B. Brown, L.A. Feldkamp: The relationship between the structural and orthogonal compressive properties of trabecular bone, J. Biomech. 27(4), 375–389 (1994)Google Scholar
  52. R.E. Guldberg, N.J. Caldwell, X.E. Guo, R.W. Goulet, S.J. Hollister, S.A. Goldstein: Mechanical stimulation of tissue repair in the hydraulic bone chamber, J. Bone Miner. Res. 12(8), 1295–1302 (1997)Google Scholar
  53. R.E. Guldberg, S.J. Hollister, G.T. Charras: The accuracy of digital image-based finite element models, J. Biomech. Eng. 120(2), 289–295 (1998)Google Scholar
  54. R.E. Guldberg, A.S. Lin, R. Coleman, G. Robertson, C. Duvall: Microcomputed tomography imaging of skeletal development and growth, Birth Defects Res. C Embryo Today 72(3), 250–259 (2004)Google Scholar
  55. T. Hildebrand, A. Laib, R. Müller, J. Dequeker, P. Rüegsegger: Direct three-dimensional morphometric analysis of human cancellous bone: Microstructural data from spine, femur, iliac crest, and calcaneus, J. Bone Miner. Res. 14(7), 1167–1174 (1999)Google Scholar
  56. B. Koller, A. Laib: Calibration of micro-CT data for quantifying bone mineral and biomaterial density and microarchitecture. In: Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials, ed. by L. Qin, H.K. Genant, J.F. Griffith, K.S. Leung (Springer, Berlin 2007)Google Scholar
  57. J.L. Kuhn, S.A. Goldstein, L.A. Feldkamp, R.W. Goulet, G. Jesion: Evaluation of a microcomputed tomography system to study trabecular bone structure, J. Orthop. Res. 8(6), 833–842 (1990)Google Scholar
  58. A. Laib, O. Barou, L. Vico, M.H. Lafage-Proust, C. Alexandre, P. Rugsegger: 3D micro-computed tomography of trabecular and cortical bone architecture with application to a rat model of immobilisation osteoporosis, Med. Biol. Eng. Comput. 38(3), 326–332 (2000)Google Scholar
  59. W.A. Merz, R.K. Schenk: Quantitative structural analysis of human cancellous bone, Acta Anat. 75(1), 54–66 (1970)Google Scholar
  60. R. Müller, H. Van Campenhout, B. Van Damme, G. Van Der Perre, J. Dequeker, T. Hildebrand, P. Rüegsegger: Morphometric analysis of human bone biopsies: A quantitative structural comparison of histological sections and micro-computed tomography, Bone 23(1), 59–66 (1998)Google Scholar
  61. K.K. Nishiyama, G.M. Campbell, R.J. Klinck, S.K. Boyd: Reproducibility of bone micro-architecture measurements in rodents by in vivo micro-computed tomography is maximized with three-dimensional image registration, Bone 46(1), 155–161 (2010)Google Scholar
  62. A. Odgaard: Three-dimensional methods for quantification of cancellous bone architecture, Bone 20(4), 315–328 (1997)Google Scholar
  63. A. Odgaard, H.J. Gundersen: Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions, Bone 14(2), 173–182 (1993)Google Scholar
  64. I.V. Pratt, G. Belev, N. Zhu, L.D. Chapman, D.M. Cooper: In vivo imaging of rat cortical bone porosity by synchrotron phase contrast micro computed tomography, Phys. Med. Biol. 60(1), 211–232 (2015)Google Scholar
  65. P. Rüegsegger, B. Koller, R. Müller: A microtomographic system for the nondestructive evaluation of bone architecture, Calcif. Tissue Int. 58(1), 24–29 (1996)Google Scholar
  66. P.L. Salmon, A.Y. Sasov: Application of nano-CT and high-resolution micro-CT to study bone quality and ultrastructure, scaffold biomaterials and vascular networks. In: Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials, ed. by L. Qin, H.K. Genant, J.F. Griffith, K.S. Leung (Springer, Berlin 2007)Google Scholar
  67. B. van Rietbergen, H. Weinans, R. Huiskes, A. Odgaard: A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models, J. Biomech. 28(1), 69–81 (1995)Google Scholar
  68. R.M. Coleman, J.E. Phillips, A. Lin, Z. Schwartz, B.D. Boyan, R.E. Guldberg: Characterization of a small animal growth plate injury model using microcomputed tomography, Bone 46(6), 1555–1563 (2010)Google Scholar
  69. C.L. Duvall, W.R. Taylor, D. Weiss, R.E. Guldberg: Quantitative microcomputed tomography analysis of collateral vessel development after ischemic injury, Am. J. Physiol. Heart Circ. Physiol. 287(1), H302–H310 (2004)Google Scholar
  70. R.E. Guldberg, R.T. Ballock, B.D. Boyan, C.L. Duvall, A.S. Lin, S. Nagaraja, M. Oest, J. Phillips, B.D. Porter, G. Robertson, W.R. Taylor: Analyzing bone, blood vessels, and biomaterials with microcomputed tomography, IEEE Eng. Med. Biol. Mag. 22(5), 77–83 (2003)Google Scholar
  71. A.W. Palmer, R.E. Guldberg, M.E. Levenston: Analysis of cartilage matrix fixed charge density and three-dimensional morphology via contrast-enhanced microcomputed tomography, Proc. Natl. Acad. Sci. USA 103(51), 19255–19260 (2006)Google Scholar
  72. G.L. Kindlmann, D.M. Weinstein, G.M. Jones, C.R. Johnson, M.R. Capecchi, C. Keller: Practical vessel imaging by computed tomography in live transgenic mouse models for human tumors, Mol. Imaging 4(4), 417–424 (2005)Google Scholar
  73. A. Lin, A.W. Palmer, C. Duvall, G. Robertson, M. Oest, B. Rai, M.E. Levenston, R. Guldberg: Contrast enhanced micro-CT imaging of soft tissues. In: Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials, ed. by L. Qin, H.K. Genant, J.F. Griffith, K.S. Leung (Springer, Berlin 2007)Google Scholar
  74. S.R. Stock, G. Wang, B. Müller: Developments in x-ray tomography x, Proceedings SPIE (2016),  https://doi.org/10.1117/12.2256419CrossRefGoogle Scholar
  75. ASTM International: ASTM 1441-11: Standard Guide for Computed Tomography (CT) Imaging (ASTM International, Subcommittee E07.01 on Radiology (X and Gamma) Method, West Conshohocken 2011)Google Scholar
  76. Wikipedia: SOLEIL, https://en.wikipedia.org/wiki/SOLEIL (2016)
  77. S.R. Stock: MicroComputed Tomography: Methodology and Applications (Taylor Francis, Boca Raton 2008)Google Scholar
  78. SOLEIL Synchtrotron: Synchrotron SOLEIL, http://www.synchrotron-soleil.fr (2016)
  79. S.R. Stock: MicroCT systems and their components. In: Microcomputed Tomography: Methodology and Applications (Taylor Francis, Boca Raton 2008)Google Scholar
  80. Wikipedia: Charge-coupled device, https://en.wikipedia.org/wiki/Charge-coupled_device (2016)
  81. S.M. Sze, K.K. Ng: Physics of Semiconductor Devices, 3rd edn. (Wiley, Hoboken 2006)Google Scholar
  82. B.D. Cullity, S.R. Stock: Elements of X-ray Diffraction, 3rd edn. (Prentice-Hall, Upper Saddle River 2001)Google Scholar
  83. J.F. Barrett, N. Keat: Artifacts in CT: Recognition and avoidance, RadioGraphics 24, 1679–1691 (2004)Google Scholar
  84. F.E. Boas, D. Fleischmann: CT artifacts: Causes and reduction techniques, Imaging Med. 4(2), 229–240 (2012)Google Scholar
  85. S.R. Stock: MicroCT in practice. In: MicroComputed Tomography: Methodology and Applications (Taylor Francis, Boca Raton 2008)Google Scholar
  86. A.J. Burghardt, G.J. Kazakia, S. Majumdar: A local adaptive threshold strategy for high resolution peripheral quantitative computed tomography of trabecular bone, Ann. Biomed. Eng. 35(10), 1678–1686 (2007)Google Scholar
  87. T.F. Chan, L.A. Vese: Active contours without edges, IEEE Trans. Image Process. 10(2), 266–277 (2001)Google Scholar
  88. J.H. Waarsing, J.S. Day, H. Weinans: An improved segmentation method for in vivo microCT imaging, J. Bone Miner. Res. 19(10), 1640–1650 (2004)Google Scholar
  89. N. Otsu: Threshold selection method from gray-level histograms, IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)Google Scholar
  90. P. Iassonov, T. Gebrenegus, M. Tuller: Segmentation of X-ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures, Water Resour. Res. (2009),  https://doi.org/10.1029/2009WR008087CrossRefGoogle Scholar
  91. T. Hara, E. Tanck, J. Homminga, R. Huiskes: The influence of microcomputed tomography threshold variations on the assessment of structural and mechanical trabecular bone properties, Bone 31(1), 107–109 (2002)Google Scholar
  92. I.H. Parkinson, A. Badiei, N.L. Fazzalari: Variation in segmentation of bone from micro-CT imaging: Implications for quantitative morphometric analysis, Australas. Phys. Eng. Sci. Med. 31(2), 160–164 (2008)Google Scholar
  93. S. Tassani, V. Korfiatis, G.K. Matsopoulos: Influence of segmentation on micro-CT images of trabecular bone, J. Microsc. 256(2), 75–81 (2014)Google Scholar
  94. M. Doube: The ellipsoid factor for quantification of rods, plates, and intermediate forms in 3D geometries, Front. Endocrinol. 6, 15 (2015)Google Scholar
  95. P.L. Salmon, C. Ohlsson, S.J. Shefelbine, M. Doube: Structure model index does not measure rods and plates in trabecular bone, Front. Endocrinol. 6, 162 (2015)Google Scholar
  96. A. Larrue, A. Rattner, Z.A. Peter, C. Olivier, N. Laroche, L. Vico, F. Peyrin: Synchrotron radiation micro-CT at the micrometer scale for the analysis of the three-dimensional morphology of microcracks in human trabecular bone, PLoS One 6(7), e21297 (2011)Google Scholar
  97. S. Frolich, H. Leemreize, A. Jakus, X. Xiao, R. Shah, H. Birkedal, J.D. Almer, S.R. Stock: Diffraction tomography and Rietveld refinement of a hydroxyapatite bone phantom, J. Appl. Crystallogr. 49, 103–109 (2016)Google Scholar
  98. J.H. Kinney, N.E. Lane, D.L. Haupt: In vivo, three-dimensional microscopy of trabecular bone, J. Bone Miner. Res. 10(2), 264–270 (1995)Google Scholar
  99. N.E. Lane, J.M. Thompson, G.J. Strewler, J.H. Kinney: Intermittent treatment with human parathyroid hormone (hPTH[1-34]) increased trabecular bone volume but not connectivity in osteopenic rats, J. Bone Miner. Res. 10(10), 1470–1477 (1995)Google Scholar
  100. F. Peyrin, M. Salome, P. Cloetens, A.M. Laval-Jeantet, E. Ritman, P. Rüegsegger: Micro-CT examinations of trabecular bone samples at different resolutions: 14, 7 and 2 micron level, Technol. Health Care 6(5/6), 391–401 (1998)Google Scholar
  101. C. Badea, L.W. Hedlund, G.A. Johnson: Micro-CT with respiratory and cardiac gating, Med. Phys. 31(12), 3324–3329 (2004)Google Scholar
  102. M.L. Bouxsein, S.K. Boyd, B.A. Christiansen, R.E. Guldberg, K.J. Jepsen, R. Müller: Guidelines for assessment of bone microstructure in rodents using micro-computed tomography, J. Bone Miner. Res. 25(7), 1468–1486 (2010)Google Scholar
  103. H. Li, H. Zhang, Z. Tang, G. Hu: Micro-computed tomography for small animal imaging: Technological details, Prog. Nat. Sci. 18, 513–521 (2008)Google Scholar
  104. D.W. Holdsworth, M.M. Thornton: Micro-CT in small animal and specimen imaging, Trends Biotechnol. 20(8), S34–S39 (2002)Google Scholar
  105. S.J. Schambach, S. Bag, L. Schilling, C. Groden, M.A. Brockmann: Application of micro-CT in small animal imaging, Methods 50(1), 2–13 (2010)Google Scholar
  106. K. Umetani, J.T. Pearson, D.O. Schwenke, M. Shirai: Development of synchrotron radiation x-ray intravital microscopy for in vivo imaging of rat heart vascular function. In: 2011 Ann. Int. Conf. IEEE Eng. Med. Biol. Soc (2011) pp. 7791–7794Google Scholar
  107. K.B. Ghaghada, C.T. Badea, L. Karumbaiah, N. Fettig, R.V. Bellamkonda, G.A. Johnson, A. Annapragada: Evaluation of tumor microenvironment in an animal model using a nanoparticle contrast agent in computed tomography imaging, Acad. Radiol. 18(1), 20–30 (2011)Google Scholar
  108. T. Nakagawa, K. Gonda, T. Kamei, L. Cong, Y. Hamada, N. Kitamura, H. Tada, T. Ishida, T. Aimiya, N. Furusawa, Y. Nakano, N. Ohuchi: X-ray computed tomography imaging of a tumor with high sensitivity using gold nanoparticles conjugated to a cancer-specific antibody via polyethylene glycol chains on their surface, Sci. Technol. Adv. Mater. 17(1), 387–397 (2016)Google Scholar
  109. S. Stock: X-ray Computed Tomography. Characterization of Materials, 2nd edn. (Wiley, New York 2012)Google Scholar
  110. D. Paganin, S.C. Mayo, T.E. Gureyev, P.R. Miller, S.W. Wilkins: Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object, J. Microsc. 206, 33–40 (2002)Google Scholar
  111. C.P. Richter, W. Liddy, A. Vo, H. Young, S. Stock, X.H. Xiao, D. Whitlon: Evaluation of neural cochlear structures after noise trauma using X-ray tomography, Proceedings SPIE (2014),  https://doi.org/10.1117/12.2062385CrossRefGoogle Scholar
  112. P.V. Granton, S.I. Pollmann, N.L. Ford, M. Drangova, D.W. Holdsworth: Implementation of dual- and triple-energy cone-beam micro-CT for postreconstruction material decomposition, Med. Phys. 35(11), 5030–5042 (2008)Google Scholar
  113. C.L. Lee, H. Min, N. Befera, D. Clark, Y. Qi, S. Das, G.A. Johnson, C.T. Badea, D.G. Kirsch: Assessing cardiac injury in mice with dual energy-microCT, 4D-microCT, and microSPECT imaging after partial heart irradiation, Int. J. Radiat. Oncol. Biol. Phys. 88(3), 686–693 (2014)Google Scholar
  114. N. Manohar, F.J. Reynoso, P. Diagaradjane, S. Krishnan, S.H. Cho: Quantitative imaging of gold nanoparticle distribution in a tumor-bearing mouse using benchtop x-ray fluorescence computed tomography, Sci. Rep. 6, 22079 (2016)Google Scholar
  115. X. Chen, H. Zhu, X. Huang, P. Wang, F. Zhang, W. Li, G. Chen, B. Chen: Novel iodinated gold nanoclusters for precise diagnosis of thyroid cancer, Nanoscale 9(6), 2219–2231 (2017)Google Scholar
  116. M.E. Birkbak, H. Leemreize, S. Frolich, S.R. Stock, H. Birkedal: Diffraction scattering computed tomography: a window into the structures of complex nanomaterials, Nanoscale 7(44), 18402–18410 (2015)Google Scholar
  117. S.R. Stock, J.D. Almer: Diffraction microcomputed tomography of an Al-matrix SiC-monofilament composite, J. Appl. Crystallogr. 45, 1077–1083 (2012)Google Scholar
  118. T.M. Breunig, S. Stock, S.D. Antolovich, J.H. Kinney, W.N. Massey, M.C. Nichols: A framework relating macroscopic measures and physical processes of crack closure of Al-Li Alloy 2090. In: Proc. Fract. Mech. Twenty-Second Symp. (1992)Google Scholar
  119. A. Guvenilir, T.M. Breunig, J.H. Kinney, S.R. Stock: Direct observation of crack opening as a function of applied load in the interior of a notched tensile sample of Al-Li 2090, Acta Mater. 45(5), 1977–1987 (1997)Google Scholar
  120. J.H. Kinney, T.M. Breunig, T.L. Starr, D. Haupt, M.C. Nichols, S.R. Stock, M.D. Butts, R.A. Saroyan: X-ray tomographic study of chemical vapor infiltration processing of ceramic composites, Science 260(5109), 789–792 (1993)Google Scholar
  121. S.B. Lee, S.R. Stock, M.D. Butts, T.L. Starr, T.M. Breunig, J.H. Kinney: Pore geometry in woven fiber structures: 0 degrees/90 degrees plain-weave cloth layup preform, J. Mater. Res. 13(5), 1209–1217 (1998)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Phil and Penny Knight Campus for Accelerating Scientific ImpactUniversity of OregonEugene, ORUSA
  2. 2.Northwestern UniversityChicago, ILUSA

Personalised recommendations