Advertisement

Fluorescence Microscopy with Nanometer Resolution

Nanoscale Resolution in Far-Field Fluorescence Microscopy
  • Steffen J. SahlEmail author
  • Andreas Schönle
  • Stefan W. Hell
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

Throughout the twentieth century, it was widely accepted that a light microscope relying on propagating light waves and conventional optical lenses could not discern details that were much finer than about half the wavelength of light, or \(200{-}400\,{\mathrm{nm}}\), due to diffraction. However, in the 1990s, the potential for overcoming the diffraction barrier was realized, and microscopy concepts were defined that now resolve fluorescent features down to molecular dimensions. This chapter discusses the simple yet powerful principles that make it possible to neutralize the resolution-limiting role of diffraction in far-field fluorescence nanoscopy methods such as STED, RESOLFT, PALM/"​"​STORM, or PAINT. In a nutshell, feature molecules residing closer than the diffraction barrier are transferred to different (quantum) states, usually a bright fluorescent state and a dark state, so that they become discernible for a brief period of detection. With nanoscopy, the interior of transparent samples, such as living cells and tissues, can be imaged at the nanoscale. A fresh look at the foundations shows that an in-depth description of the basic principles spawns powerful new concepts. Although they differ in some aspects, these concepts harness a local intensity minimum (of a doughnut-shaped or a standing wave pattern) for determining the coordinate of the fluorophore(s) to be registered. Most strikingly, by using an intensity minimum of the excitation light to establish the fluorophore position, MINFLUX nanoscopy has obtained the ultimate (super)resolution: the size of a molecule (\(\approx{}{\mathrm{1}}\,{\mathrm{nm}}\)).

optical nanoscopy super-resolution microscopy single-molecule analysis biophysical imaging materials science 

Notes

Acknowledgements

The authors thank all members of the Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, over the years for their contributions to this work and for valuable discussions. Parts of the chapter draw on previous texts from [22.106, 22.163]and the Nobel Lecture delivered by S.W.H. in Stockholm on December 8, 2014. A first version of this chapter, on which parts of the present chapter are based, was published in 2005 and reprinted in 2007.

References

  1. 22.1
    E. Abbe: Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, Arch. Mikrosk. Anat. 9, 413–420 (1873)Google Scholar
  2. 22.2
    C.J.R. Sheppard, R. Kompfner: Resonant scanning optical microscope, Appl. Opt. 17, 2879–2882 (1978)Google Scholar
  3. 22.3
    T. Wilson, C.J.R. Sheppard: Theory and Practice of Scanning Optical Microscopy (Academic Press, New York 1984)Google Scholar
  4. 22.4
    W. Denk, J.H. Strickler, W.W. Webb: Two-photon laser scanning fluorescence microscopy, Science 248, 73–76 (1990)Google Scholar
  5. 22.5
    D.W. Pohl, D. Courjon: Near Field Optics (Kluwer, Dordrecht 1993)Google Scholar
  6. 22.6
    B. Hecht, H. Bielefeldt, Y. Inouye, D.W. Pohl, L. Novotny: Facts and artifacts in near-field optical microscopy, J. Appl. Phys. 81, 2492–2498 (1997)Google Scholar
  7. 22.7
    G.T. di Francia: Supergain antennas and optical resolving power, Nuovo Cim. 9(S3), 426–435 (1952)Google Scholar
  8. 22.8
    W. Lukosz: Optical systems with resolving powers exceeding the classical limit, J. Opt. Soc. Am. 56, 1463–1472 (1966)Google Scholar
  9. 22.9
    S.W. Hell, J. Wichmann: Breaking the diffraction resolution limit by stimulated emission: Stimulated emission depletion microscopy, Opt. Lett. 19(11), 780–782 (1994)Google Scholar
  10. 22.10
    S.W. Hell, M. Kroug: Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit, Appl. Phys. B 60, 495–497 (1995)Google Scholar
  11. 22.11
    S.W. Hell: Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering. In: Nonlinear and Two-Photon-Induced Fluorescence, Topics in Fluorescence Spectroscopy, Vol. 5, ed. by J.R. Lakowicz (Plenum Press, New York 1997) pp. 361–422Google Scholar
  12. 22.12
    S.W. Hell, S. Jakobs, L. Kastrup: Imaging and writing at the nanoscale with focused visible light through saturable optical transitions, Appl. Phys. A 77, 859–860 (2003)Google Scholar
  13. 22.13
    S.W. Hell: Toward fluorescence nanoscopy, Nat. Biotechnol. 21(11), 1347–1355 (2003)Google Scholar
  14. 22.14
    V. Westphal, S.W. Hell: Nanoscale resolution in the focal plane of an optical microscope, Phys. Rev. Lett. 94, 143903 (2005)Google Scholar
  15. 22.15
    M. Born, E. Wolf: Principles of Optics, 6th edn. (Pergamon Press, Oxford 1993)Google Scholar
  16. 22.16
    J. Pawley (Ed.): Handbook of Biological Confocal Microscopy (Plenum Press, New York 1995)Google Scholar
  17. 22.17
    J.W. Goodman: Introduction to Fourier Optics (McGraw-Hill, New York 1968)Google Scholar
  18. 22.18
    A. Egner, S. Jakobs, S.W. Hell: Fast 100-nm resolution 3D-microscope reveals structural plasticity of mitochondria in live yeast, Proc. Natl. Acad. Sci. USA 99, 3370–3375 (2002)Google Scholar
  19. 22.19
    S.W. Hell, M. Schrader, H.T.M. van der Voort: Far-field fluorescence microscopy with three-dimensional resolution in the 100 nm range, J. Microsc. 185(1), 1–7 (1997)Google Scholar
  20. 22.20
    M. Göppert-Mayer: Über Elementarakte mit zwei Quantensprüngen, Ann. Phys. (Leipz.) 9, 273–295 (1931)Google Scholar
  21. 22.21
    N. Bloembergen: Nonlinear Optics (Benjamin, Amsterdam 1965)Google Scholar
  22. 22.22
    J.R. Lakowicz, I. Gryczynski, H. Malak, Z. Gryczynski: Two-color two-photon excitation of fluorescence, Photochem. Photobiol. 64, 632–635 (1996)Google Scholar
  23. 22.23
    C. Xu, W. Zipfel, J.B. Shear, R.M. Williams, W.W. Webb: Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy, Proc. Natl. Acad. Sci. USA 93, 10763–10768 (1996)Google Scholar
  24. 22.24
    P.E. Hänninen, L. Lehtelä, S.W. Hell: Two- and multiphoton excitation of conjugate dyes with continuous wave lasers, Opt. Commun. 130, 29–33 (1996)Google Scholar
  25. 22.25
    A. Schönle, P.E. Hänninen, S.W. Hell: Nonlinear fluorescence through intermolecular energy transfer and resolution increase in fluorescence microscopy, Ann. Phys. (Leipz.) 8(2), 115–133 (1999)Google Scholar
  26. 22.26
    A. Schönle, S.W. Hell: Far-field fluorescence microscopy with repetetive excitation, Eur. Phys. J. D 6, 283–290 (1999)Google Scholar
  27. 22.27
    R. Heintzmann, T.M. Jovin, C. Cremer: Saturated patterned excitation microscopy—A concept for optical resolution improvement, J. Opt. Soc. Am. A 19(8), 1599–1609 (2002)Google Scholar
  28. 22.28
    V. Westphal, L. Kastrup, S.W. Hell: Lateral resolution of 28 nm (\(\lambda\)/25) in far-field fluorescence microscopy, Appl. Phys. B 77(4), 377–380 (2003)Google Scholar
  29. 22.29
    Hell, S.W.: Double-scanning confocal microscope (Doppelkonfokales Rastermikroskop), European Patent EP041289B1 (1990)Google Scholar
  30. 22.30
    S. Hell, E.H.K. Stelzer: Properties of a 4Pi-confocal fluorescence microscope, J. Opt. Soc. Am. A 9, 2159–2166 (1992)Google Scholar
  31. 22.31
    M.G.L. Gustafsson, D.A. Agard, J.W. Sedat: Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses, Proc. SPIE 2412, 147–156 (1995)Google Scholar
  32. 22.32
    D.L. Taylor, A.S. Waggoner, F. Lanni, R.F. Murphy, R.R. Birge: Applications of Fluorescence in the Biomedical Sciences (Alan R Liss Inc, New York 1986)Google Scholar
  33. 22.33
    B. Bailey, D.L. Farkas, D.L. Taylor, F. Lanni: Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation, Nature 366, 44–48 (1993)Google Scholar
  34. 22.34
    V. Krishnamurthi, B. Bailey, F. Lanni: Image processing in 3-D standing wave fluorescence microscopy, Proc. SPIE 2655, 18–25 (1996)Google Scholar
  35. 22.35
    R. Freimann, S. Pentz, H. Hörler: Development of a standing-wave fluorescence microscope with high nodal plane flatness, J. Microsc. 187(3), 193–200 (1997)Google Scholar
  36. 22.36
    M. Nagorni, S.W. Hell: Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts, J. Opt. Soc. Am. A 18(1), 36–48 (2001)Google Scholar
  37. 22.37
    M. Nagorni, S.W. Hell: Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. II. Power and limitation of nonlinear image restoration, J. Opt. Soc. Am. A 18(1), 49–54 (2001)Google Scholar
  38. 22.38
    S.W. Hell, E.H.K. Stelzer: Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation, Opt. Commun. 93, 277–282 (1992)Google Scholar
  39. 22.39
    M. Schrader, S.W. Hell: 4Pi-confocal images with axial superresolution, J. Microsc. 183, 189–193 (1996)Google Scholar
  40. 22.40
    M.G.L. Gustafsson: Extended resolution fluorescence microscopy, Curr. Opin. Struct. Biol. 9, 627–634 (1999)Google Scholar
  41. 22.41
    M.G.L. Gustafsson, D.A. Agard, J.W. Sedat: 3D widefield light microscopy with better than 100 nm axial resolution, J. Microsc. 195, 10–16 (1999)Google Scholar
  42. 22.42
    M.G.L. Gustafsson, D.A. Agard, J.W. Sedat: 3D widefield microscopy with two objective lenses: Experimental verification of improved axial resolution, Proc. SPIE (1996),  https://doi.org/10.1117/12.237489CrossRefGoogle Scholar
  43. 22.43
    K. Bahlmann, S. Jakobs, S.W. Hell: 4Pi-confocal microscopy of live cells, Ultramicroscopy 87, 155–164 (2001)Google Scholar
  44. 22.44
    M.G.L. Gustafsson: Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy, J. Microsc. 198(2), 82–87 (2000)Google Scholar
  45. 22.45
    T.J. Holmes: Maximum-likelihood image restoration adapted for non-coherent optical imaging, J. Opt. Soc. Am. A 5(5), 666–673 (1988)Google Scholar
  46. 22.46
    W.A. Carrington, R.M. Lynch, E.D. Moore, G. Isenberg, K.E. Fogarty, F.S. Fay: Superresolution in three-dimensional images of fluorescence in cells with minimal light exposure, Science 268, 1483–1487 (1995)Google Scholar
  47. 22.47
    T.J. Holmes, S. Bhattacharyya, J.A. Cooper, D. Hanzel, V. Krishnamurthi, W.-C. Lin, B. Roysam, D.H. Szarowski, J.N. Turner: Light microscopic images reconstruction by maximum likelihood deconvolution. In: Handbook of Biological Confocal Microscopy, ed. by J. Pawley (Plenum Press, New York 1995) pp. 389–400Google Scholar
  48. 22.48
    M. Nagorni, S.W. Hell: 4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution, J. Struct. Biol. 123, 236–247 (1998)Google Scholar
  49. 22.49
    S.W. Hell, M. Nagorni: 4Pi confocal microscopy with alternate interference, Opt. Lett. 23(20), 1567–1569 (1998)Google Scholar
  50. 22.50
    B. Richards, E. Wolf: Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system, Proc. R. Soc. A 253, 358–379 (1959)Google Scholar
  51. 22.51
    A. Schönle, S.W. Hell: Calculation of vectorial three-dimensional transfer functions in large-angle focusing systems, J. Opt. Soc. Am. A 19(10), 2121–2126 (2002)Google Scholar
  52. 22.52
    C.J.R. Sheppard, Y. Kawata, S. Kawata, M. Gu: Three-dimensional transfer functions for high-aperture systems, J. Opt. Soc. Am. A 11(2), 593–596 (1993)Google Scholar
  53. 22.53
    K. Bahlmann, S.W. Hell: Polarization effects in 4Pi confocal microscopy studied with water-immersion lenses, Appl. Opt. 39(10), 1652–1658 (2000)Google Scholar
  54. 22.54
    S.W. Hell, M. Schrader, P.E. Hänninen, E. Soini: Resolving fluorescence beads at 100-200 nm distance with a two-photon 4Pi-microscope working in the near infrared, Opt. Commun. 120, 129–133 (1995)Google Scholar
  55. 22.55
    M. Schrader, K. Bahlmann, G. Giese, S.W. Hell: 4Pi-confocal imaging in fixed biological specimens, Biophys. J. 75, 1659–1668 (1998)Google Scholar
  56. 22.56
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. (Cambridge Univ. Press, New York 1992)Google Scholar
  57. 22.57
    M. Bertero, P. Boccacci, G.J. Brakenhoff, F. Malfanti, H.T.M. Voort: Three-dimensional image restoration and super-resolution in fluorescence confocal microscopy, J. Microsc. 157, 3–20 (1990)Google Scholar
  58. 22.58
    B. Albrecht, A.V. Failla, A. Schweitzer, C. Cremer: Spatially modulated illumination microscopy allows axial distance resolution in the nanometer range, Appl. Opt. 41(1), 80–87 (2002)Google Scholar
  59. 22.59
    B. Schneider, B. Albrecht, P. Jaeckle, D. Neofotistos, S. Soeding, T. Jager, C.G. Cremer: Nanolocalization measurements in spatially modulated illumination microscopy using two coherent illumination beams, Proc. SPIE 3921, 321–330 (2000)Google Scholar
  60. 22.60
    M. Schmidt, M. Nagorni, S.W. Hell: Subresolution axial distance measurements in far-field fluorescence microscopy with precision of 1 nanometer, Rev. Sci. Instrum. 71, 2742–2745 (2000)Google Scholar
  61. 22.61
    A.V. Failla, U. Spoeri, B. Albrecht, A. Kroll, C. Cremer: Nanosizing of fluorescent objects by spatially modulated illumination microscopy, Appl. Opt. 41(34), 7275–7283 (2002)Google Scholar
  62. 22.62
    R. Heintzmann, C. Cremer: Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating, Proc. SPIE 3568, 185–195 (1998)Google Scholar
  63. 22.63
    C.M. Blanca, J. Bewersdorf, S.W. Hell: Determination of the unknown phase difference in 4Pi-confocal microscopy through the image intensity, Opt. Commun. 206, 281–285 (2002)Google Scholar
  64. 22.64
    H. Gugel, J. Bewersdorf, S. Jakobs, J. Engelhardt, R. Storz, S.W. Hell: Cooperative 4Pi excitation and detection yields 7-fold sharper optical sections in live cell microscopy, Biophys. J. 87, 4146–4152 (2004)Google Scholar
  65. 22.65
    M. Dyba, S.W. Hell: Focal spots of size \(\lambda\)/23 open up far-field fluorescence microscopy at 33 nm axial resolution, Phys. Rev. Lett. 88, 163901 (2002)Google Scholar
  66. 22.66
    Y.R. Shen: The Principles of Nonlinear Optics, 1st edn. (John Wiley & Sons, New York 1984)Google Scholar
  67. 22.67
    S.W. Hell: Strategy for far-field optical imaging and writing without diffraction limit, Phys. Lett. A 326(1-2), 140–145 (2004)Google Scholar
  68. 22.68
    T.A. Klar, S. Jakobs, M. Dyba, A. Egner, S.W. Hell: Fluorescence microscopy with diffraction resolution limit broken by stimulated emission, Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000)Google Scholar
  69. 22.69
    T.A. Klar, E. Engel, S.W. Hell: Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes, Phys. Rev. E 64, 066613 (2001)Google Scholar
  70. 22.70
    J. Keller, A. Schönle, S.W. Hell: Efficient fluorescence inhibition patterns for RESOLFT microscopy, Opt. Express 15(6), 3361–3371 (2007)Google Scholar
  71. 22.71
    K.I. Willig, S.O. Rizzoli, V. Westphal, R. Jahn, S.W. Hell: STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis, Nature 440(7086), 935–939 (2006)Google Scholar
  72. 22.72
    M. Dyba, S.W. Hell: Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission, Appl. Opt. 42(25), 5123–5129 (2003)Google Scholar
  73. 22.73
    L. Kastrup, S.W. Hell: Absolute optical cross section of individual fluorescent molecules, Angew. Chem. Int. Ed. 43, 6646–6649 (2004)Google Scholar
  74. 22.74
    V. Westphal, C.M. Blanca, M. Dyba, L. Kastrup, S.W. Hell: Laser-diode-stimulated emission depletion microscopy, Appl. Phys. Lett. 82(18), 3125–3127 (2003)Google Scholar
  75. 22.75
    M. Dyba, S. Jakobs, S.W. Hell: Immunofluorescence stimulated emission depletion microscopy, Nat. Biotechnol. 21(11), 1303–1304 (2003)Google Scholar
  76. 22.76
    D. Magde, E.L. Elson, W.W. Webb: Thermodynamic fluctuations in a reacting system—Measurement by fluorescence correlation spectroscopy, Phys. Rev. Lett. 29(11), 705–708 (1972)Google Scholar
  77. 22.77
    M. Eigen, R. Rigler: Sorting single molecules: Applications to diagnostics and evolutionary biotechnology, Proc. Natl. Acad. Sci. USA 91, 5740–5747 (1994)Google Scholar
  78. 22.78
    E.L. Elson, R. Rigler (Eds.): Fluorescence Correlation Spectroscopy. Theory and Applications (Springer, Berlin 2001)Google Scholar
  79. 22.79
    M.J. Levene, J. Korlach, S.W. Turner, M. Foquet, H.G. Craighead, W.W. Webb: Zero-mode waveguides for single-molecule analysis at high concentrations, Science 299, 682–686 (2003)Google Scholar
  80. 22.80
    L. Kastrup, H. Blom, C. Eggeling, S.W. Hell: Fluorescence fluctuation spectroscopy in subdiffraction focal volumes, Phys. Rev. Lett. 94, 178104 (2005)Google Scholar
  81. 22.81
    S. Weiss: Shattering the diffraction limit of light: A revolution in fluorescence microscopy?, Proc. Natl. Acad. Sci. USA 97(16), 8747–8749 (2000)Google Scholar
  82. 22.82
    T.A. Laurence, S. Weiss: How to detect weak pairs, Science 299(5607), 667–668 (2003)Google Scholar
  83. 22.83
    B. Harke, J. Keller, C.K. Ullal, V. Westphal, A. Schönle, S.W. Hell: Resolution scaling in STED microscopy, Opt. Express 16(6), 4154–4162 (2008)Google Scholar
  84. 22.84
    S.W. Hell, R. Schmidt, A. Egner: Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses, Nat. Photonics 3, 381 (2009)Google Scholar
  85. 22.85
    F. Göttfert, C.A. Wurm, V. Mueller, S. Berning, V.C. Cordes, A. Honigmann, S.W. Hell: Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution, Biophys. J. 105(1), L01–L3 (2013)Google Scholar
  86. 22.86
    S. Bretschneider, C. Eggeling, S.W. Hell: Breaking the diffraction barrier in fluorescence microscopy by optical shelving, Phys. Rev. Lett. 98(21), 218103 (2007)Google Scholar
  87. 22.87
    E. Rittweger, D. Wildanger, S.W. Hell: Far-field fluorescence nanoscopy of diamond color centers by ground state depletion, Europhys. Lett. 86(1), 14001 (2009)Google Scholar
  88. 22.88
    M.G.L. Gustafsson: Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution, Proc. Natl. Acad. Sci. USA 102(37), 13081–13086 (2005)Google Scholar
  89. 22.89
    J. Oracz, K. Adolfsson, V. Westphal, C. Radzewicz, M.T. Borgström, S.J. Sahl, C.N. Prinz, S.W. Hell: Ground state depletion nanoscopy resolves semiconductor nanowire barcode segments at room temperature, Nano Lett. 17(4), 2652–2659 (2017)Google Scholar
  90. 22.90
    R.J. Kittel, C. Wichmann, T.M. Rasse, W. Fouquet, M. Schmidt, A. Schmid, D.A. Wagh, C. Pawlu, R.R. Kellner, K.I. Willig, S.W. Hell, E. Buchner, M. Heckmann, S.J. Sigrist: Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release, Science 312(5776), 1051–1054 (2006)Google Scholar
  91. 22.91
    J.J. Sieber, K.I. Willig, R. Heintzmann, S.W. Hell, T. Lang: The SNARE motif is essential for the formation of syntaxin clusters in the plasma membrane, Biophys. J. 90(8), 2843–2851 (2006)Google Scholar
  92. 22.92
    G. Donnert, J. Keller, R. Medda, M.A. Andrei, S.O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, S.W. Hell: Macromolecular-scale resolution in biological fluorescence microscopy, Proc. Natl. Acad. Sci. USA 103(31), 11440–11445 (2006)Google Scholar
  93. 22.93
    R.R. Kellner, C.J. Baier, K.I. Willig, S.W. Hell, F.J. Barrantes: Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy, Neuroscience 144(1), 135–143 (2007)Google Scholar
  94. 22.94
    R. Schmidt, C.A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, S.W. Hell: Spherical nanosized focal spot unravels the interior of cells, Nat. Methods 5(6), 539–544 (2008)Google Scholar
  95. 22.95
    V. Westphal, M.A. Lauterbach, A. Di Nicola, S.W. Hell: Dynamic far-field fluorescence nanoscopy, New J. Phys. 9, 435 (2007)Google Scholar
  96. 22.96
    V. Westphal, S.O. Rizzoli, M.A. Lauterbach, D. Kamin, R. Jahn, S.W. Hell: Video-rate far-field optical nanoscopy dissects synaptic vesicle movement, Science 320(5873), 246–249 (2008)Google Scholar
  97. 22.97
    C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V.N. Belov, B. Hein, C. von Middendorff, A. Schönle, S.W. Hell: Direct observation of the nanoscale dynamics of membrane lipids in a living cell, Nature 457(7233), 1159–1162 (2009)Google Scholar
  98. 22.98
    S.J. Sahl, M. Leutenegger, M. Hilbert, S.W. Hell, C. Eggeling: Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids, Proc. Natl. Acad. Sci. USA 107(15), 6829–6834 (2010)Google Scholar
  99. 22.99
    S.J. Sahl, M. Leutenegger, S.W. Hell, C. Eggeling: High-resolution tracking of single-molecule diffusion in membranes by confocalized and spatially differentiated fluorescence photon stream recording, ChemPhysChem 15(4), 771–783 (2014)Google Scholar
  100. 22.100
    B. Hein, K.I. Willig, S.W. Hell: Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell, Proc. Natl. Acad. Sci. USA 105(38), 14271–14276 (2008)Google Scholar
  101. 22.101
    U.V. Nägerl, K.I. Willig, B. Hein, S.W. Hell, T. Bonhoeffer: Live-cell imaging of dendritic spines by STED microscopy, Proc. Natl. Acad. Sci. USA 105(48), 18982–18987 (2008)Google Scholar
  102. 22.102
    K.I. Willig, J. Keller, M. Bossi, S.W. Hell: STED microscopy resolves nanoparticle assemblies, New J. Phys. 8(6), 106 (2006)Google Scholar
  103. 22.103
    B. Harke, C.K. Ullal, J. Keller, S.W. Hell: Three-dimensional nanoscopy of colloidal crystals, Nano Lett. 8(5), 1309–1313 (2008)Google Scholar
  104. 22.104
    E. Rittweger, K.Y. Han, S.E. Irvine, C. Eggeling, S.W. Hell: STED microscopy reveals crystal colour centres with nanometric resolution, Nat. Photonics 3, 144–147 (2009)Google Scholar
  105. 22.105
    C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, W. Fann: Characterization and application of single fluorescent nanodiamonds as cellular biomarkers, Proc. Natl. Acad. Sci. USA 104(3), 727–732 (2007)Google Scholar
  106. 22.106
    C. Eggeling, K.I. Willig, S.J. Sahl, S.W. Hell: Lens-based fluorescence nanoscopy, Q. Rev. Biophys. 48(2), 178–243 (2015)Google Scholar
  107. 22.107
    M. Irie, T. Fukaminato, T. Sasaki, N. Tamai, T. Kawai: A digital fluorescent molecular photoswitch, Nature 420(6917), 759–760 (2002)Google Scholar
  108. 22.108
    J. Oracz, V. Westphal, C. Radzewicz, S.J. Sahl, S.W. Hell: Photobleaching in STED nanoscopy and its dependence on the photon flux applied for reversible silencing of the fluorophore, Sci. Rep. 7(1), 11354 (2017)Google Scholar
  109. 22.109
    K.A. Lukyanov, A.F. Fradkov, N.G. Gurskaya, M.V. Matz, Y.A. Labas, A.P. Savitsky, M.L. Markelov, A.G. Zaraisky, X. Zhao, Y. Fang, W. Tan, S.A. Lukyanov: Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog, J. Biol. Chem. 275(34), 25879–25882 (2000)Google Scholar
  110. 22.110
    T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N.T. Urban, F. Lavoie-Cardinal, K.I. Willig, C. Eggeling, S. Jakobs, S.W. Hell: Diffraction-unlimited all-optical imaging and writing with a photochromic GFP, Nature 478(7368), 204–208 (2011)Google Scholar
  111. 22.111
    J. Schneider, J. Zahn, M. Maglione, S.J. Sigrist, J. Marquard, J. Chojnacki, H.-G. Kräusslich, S.J. Sahl, J. Engelhardt, S.W. Hell: Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics, Nat. Methods 12(9), 827–830 (2015)Google Scholar
  112. 22.112
    P. Hoyer, G. de Medeiros, B. Balázs, N. Norlin, C. Besir, J. Hanne, H.-G. Kräusslich, J. Engelhardt, S.J. Sahl, S.W. Hell, L. Hufnagel: Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT, Proc. Natl. Acad. Sci. USA 113(13), 3442–3446 (2016)Google Scholar
  113. 22.113
    J. Hanne, H.J. Falk, F. Görlitz, P. Hoyer, J. Engelhardt, S.J. Sahl, S.W. Hell: STED nanoscopy with fluorescent quantum dots, Nat. Commun. 6, 7127 (2015)Google Scholar
  114. 22.114
    F. Curdt, S.J. Herr, T. Lutz, R. Schmidt, J. Engelhardt, S.J. Sahl, S.W. Hell: isoSTED nanoscopy with intrinsic beam alignment, Opt. Express 23(24), 30891–30903 (2015)Google Scholar
  115. 22.115
    A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d'Este, S. Jakobs, C. Eggeling, S.W. Hell: Nanoscopy with more than 100,000 'doughnuts', Nat. Methods 10(8), 737–740 (2013)Google Scholar
  116. 22.116
    F. Bergermann, L. Alber, S.J. Sahl, J. Engelhardt, S.W. Hell: 2000-fold parallelized dual-color STED fluorescence nanoscopy, Opt. Express 23(1), 211–223 (2015)Google Scholar
  117. 22.117
    A. Chmyrov, M. Leutenegger, T. Grotjohann, A. Schönle, J. Keller-Findeisen, L. Kastrup, S. Jakobs, G. Donnert, S.J. Sahl, S.W. Hell: Achromatic light patterning and improved image reconstruction for parallelized RESOLFT nanoscopy, Sci. Rep. 7, 44619 (2017)Google Scholar
  118. 22.118
    F.R. Winter, M. Loidolt, V. Westphal, A.N. Butkevich, C. Gregor, S.J. Sahl, S.W. Hell: Multicolour nanoscopy of fixed and living cells with a single STED beam and hyperspectral detection, Sci. Rep. 7, 46492 (2017)Google Scholar
  119. 22.119
    W.E. Moerner, L. Kador: Optical detection and spectroscopy of single molecules in a solid, Phys. Rev. Lett. 62(21), 2535–2538 (1989)Google Scholar
  120. 22.120
    R.M. Dickson, A.B. Cubitt, R.Y. Tsien, W.E. Moerner: On/off blinking and switching behaviour of single molecules of green fluorescent protein, Nature 388(6640), 355–358 (1997)Google Scholar
  121. 22.121
    E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess: Imaging intracellular fluorescent proteins at nanometer resolution, Science 313(5793), 1642–1645 (2006)Google Scholar
  122. 22.122
    K. Xu, G. Zhong, X. Zhuang: Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons, Science 339(6118), 452–456 (2013)Google Scholar
  123. 22.123
    B. Huang, S.A. Jones, B. Brandenburg, X. Zhuang: Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution, Nat. Methods 5(12), 1047–1052 (2008)Google Scholar
  124. 22.124
    K. Xu, H.P. Babcock, X. Zhuang: Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton, Nat. Methods 9(2), 185–188 (2012)Google Scholar
  125. 22.125
    A. Sharonov, R.M. Hochstrasser: Wide-field subdiffraction imaging by accumulated binding of diffusing probes, Proc. Natl. Acad. Sci. USA 103(50), 18911–18916 (2006)Google Scholar
  126. 22.126
    R. Jungmann, M.S. Avendaño, J.B. Woehrstein, M. Dai, W.M. Shih, P. Yin: Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT, Nat. Methods 11(3), 313–318 (2014)Google Scholar
  127. 22.127
    J. Fölling, M. Bossi, H. Bock, R. Medda, C.A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S.W. Hell: Fluorescence nanoscopy by ground-state depletion and single-molecule return, Nat. Methods 5(11), 943–945 (2008)Google Scholar
  128. 22.128
    R.E. Thompson, D.R. Larson, W.W. Webb: Precise nanometer localization analysis for individual fluorescent probes, Biophys. J. 82(5), 2775–2783 (2002)Google Scholar
  129. 22.129
    S.W. Hell: Far-field optical nanoscopy, Science 316(5828), 1153–1158 (2007)Google Scholar
  130. 22.130
    S.W. Hell: Far-field optical nanoscopy. In: Single Molecule Spectroscopy in Chemistry, Physics and Biology, Springer Series in Chemical Physics, Vol. 96, ed. by A. Gräslund, R. Rigler, J. Widengren (Springer, Berlin 2009) pp. 298–365Google Scholar
  131. 22.131
    S.T. Hess, T.P.K. Girirajan, M.D. Mason: Ultra-high resolution imaging by fluorescence photoactivation localization microscopy, Biophys. J. 91(11), 4258–4272 (2006)Google Scholar
  132. 22.132
    M.J. Rust, M. Bates, X. Zhuang: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods 3(10), 793–796 (2006)Google Scholar
  133. 22.133
    G.H. Patterson, J. Lippincott-Schwartz: A photoactivatable GFP for selective photolabeling of proteins and cells, Science 297(5588), 1873–1877 (2002)Google Scholar
  134. 22.134
    J. Fölling, V. Belov, R. Kunetsky, R. Medda, A. Schönle, A. Egner, C. Eggeling, M. Bossi, S.W. Hell: Photochromic rhodamines provide nanoscopy with optical sectioning, Angew. Chem. Int. Ed. 46(33), 6266–6270 (2007)Google Scholar
  135. 22.135
    J. Fölling, V. Belov, D. Riedel, A. Schönle, A. Egner, C. Eggeling, M. Bossi, S.W. Hell: Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers, ChemPhysChem 9(2), 321–326 (2008)Google Scholar
  136. 22.136
    M. Bates, T.R. Blosser, X. Zhuang: Short-range spectroscopic ruler based on a single-molecule optical switch, Phys. Rev. Lett. 94(10), 108101 (2005)Google Scholar
  137. 22.137
    H. Bock, C. Geisler, C.A. Wurm, C. von Middendorff, S. Jakobs, A. Schönle, A. Egner, S.W. Hell, C. Eggeling: Two-color far-field fluorescence nanoscopy based on photoswitchable emitters, Appl. Phys. B 88(2), 161–165 (2007)Google Scholar
  138. 22.138
    M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer: Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes, Angew. Chem. Int. Ed. 47(33), 6172–6176 (2008)Google Scholar
  139. 22.139
    C. Steinhauer, C. Forthmann, J. Vogelsang, P. Tinnefeld: Superresolution microscopy on the basis of engineered dark states, J. Am. Chem. Soc. 130(50), 16840–16841 (2008)Google Scholar
  140. 22.140
    S. van de Linde, R. Kasper, M. Heilemann, M. Sauer: Photoswitching microscopy with standard fluorophores, Appl. Phys. B 93(4), 725 (2008)Google Scholar
  141. 22.141
    A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A.C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, S.W. Hell: Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters, Biophys. J. 93(9), 3285–3290 (2007)Google Scholar
  142. 22.142
    C. Geisler, A. Schönle, C. von Middendorff, H. Bock, C. Eggeling, A. Egner, S.W. Hell: Resolution of \(\lambda\)/10 in fluorescence microscopy using fast single molecule photo-switching, Appl. Phys. A 88(2), 223–226 (2007)Google Scholar
  143. 22.143
    U. Endesfelder, S. van de Linde, S. Wolter, M. Sauer, M. Heilemann: Subdiffraction-resolution fluorescence microscopy of myosin–actin motility, ChemPhysChem 11(4), 836–840 (2010)Google Scholar
  144. 22.144
    S.A. Jones, S.H. Shim, J. He, X. Zhuang: Fast, three-dimensional super-resolution imaging of live cells, Nat. Methods 8(6), 499–505 (2011)Google Scholar
  145. 22.145
    H. Shroff, C.G. Galbraith, J.A. Galbraith, E. Betzig: Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics, Nat. Methods 5(5), 417–423 (2008)Google Scholar
  146. 22.146
    A.C. Stiel, M. Andresen, H. Bock, M. Hilbert, J. Schilde, A. Schönle, C. Eggeling, A. Egner, S.W. Hell, S. Jakobs: Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy, Biophys. J. 95(6), 2989–2997 (2008)Google Scholar
  147. 22.147
    L. Cognet, D.A. Tsyboulski, R.B. Weisman: Subdiffraction far-field imaging of luminescent single-walled carbon nanotubes, Nano Lett. 8(2), 749–753 (2008)Google Scholar
  148. 22.148
    P. Hoyer, T. Staudt, J. Engelhardt, S.W. Hell: Quantum dot blueing and blinking enables fluorescence nanoscopy, Nano Lett. 11(1), 245–250 (2011)Google Scholar
  149. 22.149
    J.S. Biteen, M.A. Thompson, N.K. Tselentis, G.R. Bowman, L. Shapiro, W.E. Moerner: Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP, Nat. Methods 5, 947–949 (2008)Google Scholar
  150. 22.150
    S.J. Sahl, W.E. Moerner: Super-resolution fluorescence imaging with single molecules, Curr. Opin. Struct. Biol. 23(5), 778–787 (2013)Google Scholar
  151. 22.151
    J. Bierwagen, I. Testa, J. Fölling, D. Wenzel, S. Jakobs, C. Eggeling, S.W. Hell: Far-field autofluorescence nanoscopy, Nano Lett. 10(10), 4249–4252 (2010)Google Scholar
  152. 22.152
    B. Huang, W. Wang, M. Bates, X. Zhuang: Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy, Science 319(5864), 810–813 (2008)Google Scholar
  153. 22.153
    S.R.P. Pavani, M.A. Thompson, J.S. Biteen, S.J. Lord, N. Liu, R.J. Twieg, R. Piestun, W.E. Moerner: Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function, Proc. Natl. Acad. Sci. USA 106(9), 2995–2999 (2009)Google Scholar
  154. 22.154
    H.-I.D. Lee, S.J. Sahl, M.D. Lew, W.E. Moerner: The double-helix microscope super-resolves extended biological structures by localizing single blinking molecules in three dimensions with nanoscale precision, Appl. Phys. Lett. 100(15), 153701 (2012)Google Scholar
  155. 22.155
    Y. Shechtman, S.J. Sahl, A.S. Backer, W.E. Moerner: Optimal point spread function design for 3D imaging, Phys. Rev. Lett. 113(13), 133902 (2014)Google Scholar
  156. 22.156
    Y. Shechtman, L.E. Weiss, A.S. Backer, S.J. Sahl, W.E. Moerner: Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions, Nano Lett. 15(6), 4194–4199 (2015)Google Scholar
  157. 22.157
    Y. Shechtman, L.E. Weiss, A.S. Backer, M.Y. Lee, W.E. Moerner: Multicolour localization microscopy by point-spread-function engineering, Nat. Photonics 10(9), 590–594 (2016)Google Scholar
  158. 22.158
    M.P. Backlund, M.D. Lew, A.S. Backer, S.J. Sahl, G. Grover, A. Agrawal, R. Piestun, W.E. Moerner: Simultaneous, accurate measurement of the 3D position and orientation of single molecules, Proc. Natl. Acad. Sci. USA 109(47), 19087–19092 (2012)Google Scholar
  159. 22.159
    M.P. Backlund, M.D. Lew, A.S. Backer, S.J. Sahl, W.E. Moerner: The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging, ChemPhysChem 15(4), 587–599 (2014)Google Scholar
  160. 22.160
    A.S. Backer, M.Y. Lee, W.E. Moerner: Enhanced DNA imaging using super-resolution microscopy and simultaneous single-molecule orientation measurements, Optica 3(6), 659–666 (2016)Google Scholar
  161. 22.161
    A.S. Backer, M.P. Backlund, A.R. von Diezmann, S.J. Sahl, W.E. Moerner: Abisected pupil for studying single-molecule orientational dynamics and its application to three-dimensional super-resolution microscopy, Appl. Phys. Lett. 104(19), 193701 (2014)Google Scholar
  162. 22.162
    A.S. Backer, M.P. Backlund, M.D. Lew, W.E. Moerner: Single-molecule orientation measurements with a quadrated pupil, Opt. Lett. 38(9), 1521–1523 (2013)Google Scholar
  163. 22.163
    S.J. Sahl, S.W. Hell, S. Jakobs: Fluorescence nanoscopy in cell biology, Nat. Rev. Mol. Cell Biol. 18, 685–701 (2017)Google Scholar
  164. 22.164
    G. Komis, O. Šamajová, M. Ovečka, J. Šamaj: Super-resolution microscopy in plant cell imaging, Trends Plant Sci. 20(12), 834–843 (2015)Google Scholar
  165. 22.165
    D.J. Williamson, D.M. Owen, J. Rossy, A. Magenau, M. Wehrmann, J.J. Gooding, K. Gaus: Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events, Nat. Immunol. 12(7), 655–662 (2011)Google Scholar
  166. 22.166
    B. Dudok, L. Barna, M. Ledri, S.I. Szabó, E. Szabadits, B. Pintér, S.G. Woodhams, C.M. Henstridge, G.Y. Balla, R. Nyilas, C. Varga, S.-H. Lee, M. Matolcsi, J. Cervenak, I. Kacskovics, M. Watanabe, C. Sagheddu, M. Melis, M. Pistis, I. Soltesz, I. Katona: Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling, Nat. Neurosci. 18(1), 75–86 (2015)Google Scholar
  167. 22.167
    L. Lau, Y.L. Lee, S.J. Sahl, T. Stearns, W.E. Moerner: STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein, Biophys. J. 102(12), 2926–2935 (2012)Google Scholar
  168. 22.168
    J. Chojnacki, T. Staudt, B. Glass, P. Bingen, J. Engelhardt, M. Anders, J. Schneider, B. Müller, S.W. Hell, H.-G. Kräusslich: Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy, Science 338(6106), 524–528 (2012)Google Scholar
  169. 22.169
    S.B. Van Engelenburg, G. Shtengel, P. Sengupta, K. Waki, M. Jarnik, S.D. Ablan, E.O. Freed, H.F. Hess, J. Lippincott-Schwartz: Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits, Science 343(6171), 653–656 (2014)Google Scholar
  170. 22.170
    M. Bleck, M.S. Itano, D.S. Johnson, V.K. Thomas, A.J. North, P.D. Bieniasz, S.M. Simon: Temporal and spatial organization of ESCRT protein recruitment during HIV-1 budding, Proc. Natl. Acad. Sci. USA 111(33), 12211–12216 (2014)Google Scholar
  171. 22.171
    J. Prescher, V. Baumgärtel, S. Ivanchenko, A.A. Torrano, C. Bräuchle, B. Müller, D.C. Lamb: Super-resolution imaging of ESCRT-proteins at HIV-1 assembly sites, PLoS Pathogens 11(2), e1004677 (2015)Google Scholar
  172. 22.172
    J. Hanne, F. Göttfert, J. Schimer, M. Anders-Össwein, J. Konvalinka, J. Engelhardt, B. Müller, S.W. Hell, H.-G. Kräusslich: Stimulated emission depletion nanoscopy reveals time-course of human immunodeficiency virus proteolytic maturation, ACS Nano 10(9), 8215–8222 (2016)Google Scholar
  173. 22.173
    A. Gahlmann, W.E. Moerner: Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging, Nat. Rev. Microbiol. 12(1), 9–22 (2014)Google Scholar
  174. 22.174
    C. Chen, S. Zong, Z. Wang, J. Lu, D. Zhu, Y. Zhang, Y. Cui: Imaging and intracellular tracking of cancer-derived exosomes using single-molecule localization-based super-resolution microscope, ACS Appl. Mater. Interfaces 8(39), 25825–25833 (2016)Google Scholar
  175. 22.175
    P. Ilgen, S. Stoldt, L.C. Conradi, C.A. Wurm, J. Ruschoff, B.M. Ghadimi, T. Liersch, S. Jakobs: STED super-resolution microscopy of clinical paraffin-embedded human rectal cancer tissue, PLoS One 9(7), e101563 (2014)Google Scholar
  176. 22.176
    A. Benda, H. Aitken, D.S. Davies, R. Whan, C. Goldsbury: STED imaging of tau filaments in Alzheimer's disease cortical grey matter, J. Struct. Biol. 195(3), 345–352 (2016)Google Scholar
  177. 22.177
    S.W. Hell, S.J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M.J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S.J. Davis, C. Eggeling, D. Klenerman, K.I. Willig, G. Vicidomini, M. Castello, A. Diaspro, T. Cordes: The 2015 super-resolution microscopy roadmap, J. Phys. D 48(44), 443001 (2015)Google Scholar
  178. 22.178
    A. Löschberger, S. van de Linde, M.C. Dabauvalle, B. Rieger, M. Heilemann, G. Krohne, M. Sauer: Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution, J. Cell Sci. 125(3), 570–575 (2012)Google Scholar
  179. 22.179
    A. Szymborska, A. de Marco, N. Daigle, V.C. Cordes, J.A. Briggs, J. Ellenberg: Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging, Science 341(6146), 655–658 (2013)Google Scholar
  180. 22.180
    J. Broeken, H. Johnson, D.S. Lidke, S. Liu, R.P. Nieuwenhuizen, S. Stallinga, K.A. Lidke, B. Rieger: Resolution improvement by 3D particle averaging in localization microscopy, Methods Appl. Fluoresc. 3(1), 014003 (2015)Google Scholar
  181. 22.181
    T.T. Yang, J. Su, W.J. Wang, B. Craige, G.B. Witman, M.F. Tsou, J.C. Liao: Superresolution pattern recognition reveals the architectural map of the ciliary transition zone, Sci. Rep. 5, 14096 (2015)Google Scholar
  182. 22.182
    R.F. Laine, A. Albecka, S. van de Linde, E.J. Rees, C.M. Crump, C.F. Kaminski: Structural analysis of herpes simplex virus by optical super-resolution imaging, Nat. Commun. 6, 5980 (2015)Google Scholar
  183. 22.183
    G. Zhong, J. He, R. Zhou, D. Lorenzo, H.P. Babcock, V. Bennett, X. Zhuang: Developmental mechanism of the periodic membrane skeleton in axons, eLife 3, e04581 (2014)Google Scholar
  184. 22.184
    E. D'Este, D. Kamin, F. Göttfert, A. El-Hady, S.W. Hell: STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons, Cell Rep. 10(8), 1246–1251 (2015)Google Scholar
  185. 22.185
    S.C. Sidenstein, E. D'Este, M.J. Böhm, J.G. Danzl, V.N. Belov, S.W. Hell: Multicolour multilevel STED nanoscopy of actin/spectrin organization at synapses, Sci. Rep. 6, 26725 (2016)Google Scholar
  186. 22.186
    J. Bär, O. Kobler, B. van Bommel, M. Mikhaylova: Periodic F-actin structures shape the neck of dendritic spines, Sci. Rep. 6, 37136 (2016)Google Scholar
  187. 22.187
    C. Leterrier, J. Potier, G. Caillol, C. Debarnot, F. Rueda Boroni, B. Dargent: Nanoscale architecture of the axon initial segment reveals an organized and robust scaffold, Cell Rep. 13(12), 2781–2793 (2015)Google Scholar
  188. 22.188
    S.C. Leite, P. Sampaio, V.F. Sousa, J. Nogueira-Rodrigues, R. Pinto-Costa, L.L. Peters, P. Brites, M.M. Sousa: The actin-binding protein \(\alpha\)-adducin is required for maintaining axon diameter, Cell Rep. 15(3), 490–498 (2016)Google Scholar
  189. 22.189
    G. Lukinavičius, L. Reymond, E. D'Este, A. Masharina, F. Göttfert, H. Ta, A. Güther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D.W. Gerlich, H.D. Arndt, S.W. Hell, K. Johnsson: Fluorogenic probes for live-cell imaging of the cytoskeleton, Nat. Methods 11(7), 731–733 (2014)Google Scholar
  190. 22.190
    E. D'Este, D. Kamin, C. Velte, F. Göttfert, M. Simons, S.W. Hell: Subcortical cytoskeleton periodicity throughout the nervous system, Sci. Rep. 6, 22741 (2016)Google Scholar
  191. 22.191
    J. He, R. Zhou, Z. Wu, M.A. Carrasco, P.T. Kurshan, J.E. Farley, D.J. Simon, G. Wang, B. Han, J. Hao, E. Heller, M.R. Freeman, K. Shen, T. Maniatis, M. Tessier-Lavigne, X. Zhuang: Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species, Proc. Natl. Acad. Sci. USA 113(21), 6029–6034 (2016)Google Scholar
  192. 22.192
    D. Albrecht, C.M. Winterflood, M. Sadeghi, T. Tschager, F. Noé, H. Ewers: Nanoscopic compartmentalization of membrane protein motion at the axon initial segment, J. Cell Biol. 215, 37–46 (2016)Google Scholar
  193. 22.193
    E. D'Este, D. Kamin, F. Balzarotti, S.W. Hell: Ultrastructural anatomy of nodes of Ranvier in the peripheral nervous system as revealed by STED microscopy, Proc. Natl. Acad. Sci. USA 114(2), E191–E199 (2017)Google Scholar
  194. 22.194
    B.G. Wilhelm, S. Mandad, S. Truckenbrodt, K. Kröhnert, C. Schäfer, B. Rammner, S.J. Koo, G.A. Claßen, M. Krauss, V. Haucke, H. Urlaub, S.O. Rizzoli: Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins, Science 344(6187), 1023–1028 (2014)Google Scholar
  195. 22.195
    A. Chazeau, G. Giannone: Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling, Cell. Mol. Life Sci. 73(16), 3053–3073 (2016)Google Scholar
  196. 22.196
    N. Ehmann, M. Sauer, R.J. Kittel: Super-resolution microscopy of the synaptic active zone, Front. Cell. Neurosci. 9, 7 (2015)Google Scholar
  197. 22.197
    W. Fouquet, D. Owald, C. Wichmann, S. Mertel, H. Depner, M. Dyba, S. Hallermann, R.J. Kittel, S. Eimer, S.J. Sigrist: Maturation of active zone assembly by Drosophila Bruchpilot, J. Cell Biol. 186(1), 129–145 (2009)Google Scholar
  198. 22.198
    D. Owald, W. Fouquet, M. Schmidt, C. Wichmann, S. Mertel, H. Depner, F. Christiansen, C. Zube, C. Quentin, J. Körner, H. Urlaub, K. Mechtler, S.J. Sigrist: A Syd-1 homologue regulates pre- and postsynaptic maturation in Drosophila, J. Cell Biol. 188(4), 565–579 (2010)Google Scholar
  199. 22.199
    K.S. Liu, M. Siebert, S. Mertel, E. Knoche, S. Wegener, C. Wichmann, T. Matkovic, K. Muhammad, H. Depner, C. Mettke, J. Bückers, S.W. Hell, M. Müller, G.W. Davis, D. Schmitz, S.J. Sigrist: RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release, Science 334(6062), 1565–1569 (2011)Google Scholar
  200. 22.200
    N. Ehmann, S. van de Linde, A. Alon, D. Ljaschenko, X.Z. Keung, T. Holm, A. Rings, A. DiAntonio, S. Hallermann, U. Ashery, M. Heckmann, M. Sauer, R.J. Kittel: Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states, Nat. Commun. 5, 4650 (2014)Google Scholar
  201. 22.201
    H. Nishimune, Y. Badawi, S. Mori, K. Shigemoto: Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice, Sci. Rep. 6, 27935 (2016)Google Scholar
  202. 22.202
    I. Chamma, M. Letellier, C. Butler, B. Tessier, K.-H. Lim, I. Gauthereau, D. Choquet, J.B. Sibarita, S. Park, M. Sainlos, O. Thoumine: Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin, Nat. Commun. 7, 10773 (2016)Google Scholar
  203. 22.203
    A. Dani, B. Huang, J. Bergan, C. Dulac, X. Zhuang: Superresolution imaging of chemical synapses in the brain, Neuron 68(5), 843–856 (2010)Google Scholar
  204. 22.204
    N. Hoze, D. Nair, E. Hosy, C. Sieben, S. Manley, A. Herrmann, J.-B. Sibarita, D. Choquet, D. Holcman: Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by superresolution analysis of live cell imaging, Proc. Natl. Acad. Sci. USA 109(42), 17052–17057 (2012)Google Scholar
  205. 22.205
    H.D. MacGillavry, Y. Song, S. Raghavachari, T.A. Blanpied: Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors, Neuron 78(4), 615–622 (2013)Google Scholar
  206. 22.206
    Y. Fukata, A. Dimitrov, G. Boncompain, O. Vielemeyer, F. Perez, M. Fukata: Local palmitoylation cycles define activity-regulated postsynaptic subdomains, J. Cell Biol. 202(1), 145–161 (2013)Google Scholar
  207. 22.207
    D. Nair, E. Hosy, J.D. Petersen, A. Constals, G. Giannone, D. Choquet, J.-B. Sibarita: Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95, J. Neurosci. 33(32), 13204–13224 (2013)Google Scholar
  208. 22.208
    A.-H. Tang, H. Chen, T.P. Li, S.R. Metzbower, H.D. MacGillavry, T.A. Blanpied: A trans-synaptic nanocolumn aligns neurotransmitter release to receptors, Nature 536(7615), 210–214 (2016)Google Scholar
  209. 22.209
    I. Izeddin, C.G. Specht, M. Lelek, X. Darzacq, A. Triller, C. Zimmer, M. Dahan: Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe, PLoS One 6(1), e15611 (2011)Google Scholar
  210. 22.210
    N.T. Urban, K.I. Willig, S.W. Hell, U.V. Nägerl: STED nanoscopy of actin dynamics in synapses deep inside living brain slices, Biophys. J. 101(5), 1277–1284 (2011)Google Scholar
  211. 22.211
    A. Chazeau, A. Mehidi, D. Nair, J.J. Gautier, C. Leduc, I. Chamma, F. Kage, A. Kechkar, O. Thoumine, K. Rottner, D. Choquet, A. Gautreau, J.-B. Sibarita, G. Giannone: Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion, EMBO Journal 33(23), 2745–2764 (2014)Google Scholar
  212. 22.212
    K. Takasaki, B.L. Sabatini: Super-resolution 2-photon microscopy reveals that the morphology of each dendritic spine correlates with diffusive but not synaptic properties, Front. Neuroanat. 8, 29 (2014)Google Scholar
  213. 22.213
    J. Tønnesen, G. Katona, B. Rózsa, U.V. Nägerl: Spine neck plasticity regulates compartmentalization of synapses, Nat. Neurosci. 17(5), 678–685 (2014)Google Scholar
  214. 22.214
    S. Berning, K.I. Willig, H. Steffens, P. Dibaj, S.W. Hell: Nanoscopy in a living mouse brain, Science 335(6068), 551 (2012)Google Scholar
  215. 22.215
    J.-M. Masch, H. Steffens, J. Fischer, J. Engelhardt, J. Hubrich, J. Keller-Findeisen, E. D’Este, N.T. Urban, S.G.N. Grant, S.J. Sahl, D. Kamin, S.W. Hell: Robust nanoscopy of a synaptic protein in living mice by organic-fluorophore labeling, Proc. Natl. Acad. Sci. USA 115(34), E8047–E8056 (2018)Google Scholar
  216. 22.216
    S. Schnorrenberg, T. Grotjohann, G. Vorbrüggen, A. Herzig, S.W. Hell, S. Jakobs: In vivo super-resolution RESOLFT microscopy of Drosophila melanogaster, eLife 5, e15567 (2016)Google Scholar
  217. 22.217
    W.C. Duim, Y. Jiang, K. Shen, J. Frydman, W.E. Moerner: Super-resolution fluorescence of huntingtin reveals growth of globular species into short fibers and coexistence of distinct aggregates, ACS Chem. Biol. 9(12), 2767–2778 (2014)Google Scholar
  218. 22.218
    D. Pinotsi, A.K. Buell, C. Galvagnion, C.M. Dobson, G.S. Kaminski Schierle, C.F. Kaminski: Direct observation of heterogeneous amyloid fibril growth kinetics via two-color super-resolution microscopy, Nano Lett. 14(1), 339–345 (2014)Google Scholar
  219. 22.219
    G.S. Kaminski Schierle, S. van de Linde, M. Erdelyi, E.K. Esbjörner, T. Klein, E. Rees, C.W. Bertoncini, C.M. Dobson, M. Sauer, C.F. Kaminski: In situ measurements of the formation and morphology of intracellular \(\beta\)-amyloid fibrils by super-resolution fluorescence imaging, J. Am. Chem. Soc. 133(33), 12902–12905 (2011)Google Scholar
  220. 22.220
    S.J. Sahl, L.E. Weiss, W.C. Duim, J. Frydman, W.E. Moerner: Cellular inclusion bodies of mutant huntingtin exon 1 obscure small fibrillar aggregate species, Sci. Rep. 2, 895 (2012)Google Scholar
  221. 22.221
    M.J. Roberti, J. Fölling, M.S. Celej, M. Bossi, T.M. Jovin, E.A. Jares-Erijman: Imaging nanometer-sized \(\alpha\)-synuclein aggregates by superresolution fluorescence localization microscopy, Biophys. J. 102(7), 1598–1607 (2012)Google Scholar
  222. 22.222
    E.M. Sontag, L.A. Joachimiak, Z. Tan, A. Tomlinson, D.E. Housman, C.G. Glabe, S.G. Potkin, J. Frydman, L.M. Thompson: Exogenous delivery of chaperonin subunit fragment ApiCCT1 modulates mutant huntingtin cellular phenotypes, Proc. Natl. Acad. Sci. USA 110(8), 3077–3082 (2013)Google Scholar
  223. 22.223
    S.J. Sahl, L. Lau, W.I.M. Vonk, L.E. Weiss, J. Frydman, W.E. Moerner: Delayed emergence of subdiffraction-sized mutant huntingtin fibrils following inclusion body formation, Q. Rev. Biophys. 49, e2 (2016)Google Scholar
  224. 22.224
    L. Li, H. Liu, P. Dong, D. Li, W.R. Legant, J.B. Grimm, L.D. Lavis, E. Betzig, R. Tjian, Z. Liu: Real-time imaging of Huntingtin aggregates diverting target search and gene transcription, eLife 5, e17056 (2016)Google Scholar
  225. 22.225
    B.R. Patton, D. Burke, D. Owald, T.J. Gould, J. Bewersdorf, M.J. Booth: Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics, Opt. Express 24(8), 8862–8876 (2016)Google Scholar
  226. 22.226
    J. Antonello, E.B. Kromann, D. Burke, J. Bewersdorf, M.J. Booth: Coma aberrations in combined two- and three-dimensional STED nanoscopy, Opt. Lett. 41(15), 3631–3634 (2016)Google Scholar
  227. 22.227
    D. Burke, B. Patton, F. Huang, J. Bewersdorf, M.J. Booth: Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy, Optica 2(2), 177–185 (2015)Google Scholar
  228. 22.228
    K.I. Willig, H. Steffens, C. Gregor, A. Herholt, M.J. Rossner, S.W. Hell: Nanoscopy of filamentous actin in cortical dendrites of a living mouse, Biophys. J. 106(1), L01–L3 (2014)Google Scholar
  229. 22.229
    M. Ratz, I. Testa, S.W. Hell, S. Jakobs: CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super-resolution microscopy of living human cells, Sci. Rep. 5, 9592 (2015)Google Scholar
  230. 22.230
    F. Bottanelli, E.B. Kromann, E.S. Allgeyer, R.S. Erdmann, S. Wood Baguley, G. Sirinakis, A. Schepartz, D. Baddeley, D.K. Toomre, J.E. Rothman, J. Bewersdorf: Two-colour live-cell nanoscale imaging of intracellular targets, Nat. Commun. 7, 10778 (2016)Google Scholar
  231. 22.231
    G.C.H. Mo, B. Ross, F. Hertel, P. Manna, X. Yang, E. Greenwald, C. Booth, A.M. Plummer, B. Tenner, Z. Chen, Y. Wang, E.J. Kennedy, P.A. Cole, K.G. Fleming, A. Palmer, R. Jimenez, J. Xiao, P. Dedecker, J. Zhang: Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution, Nat. Methods 14(4), 427–434 (2017)Google Scholar
  232. 22.232
    I. Testa, N.T. Urban, S. Jakobs, C. Eggeling, K.I. Willig, S.W. Hell: Nanoscopy of living brain slices with low light levels, Neuron 75(6), 992–1000 (2012)Google Scholar
  233. 22.233
    F. Göttfert, T. Pleiner, J. Heine, V. Westphal, D. Görlich, S.J. Sahl, S.W. Hell: Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent, Proc. Natl. Acad. Sci. USA 114(9), 2125–2130 (2017)Google Scholar
  234. 22.234
    J.G. Danzl, S.C. Sidenstein, C. Gregor, N.T. Urban, P. Ilgen, S. Jakobs, S.W. Hell: Coordinate-targeted fluorescence nanoscopy with multiple off states, Nat. Photonics 10(2), 122–128 (2016)Google Scholar
  235. 22.235
    J. Heine, M. Reuss, B. Harke, E. D’Este, S.J. Sahl, S.W. Hell: Adaptive-illumination STED nanoscopy, Proc. Natl. Acad. Sci. USA 114(37), 9797–9802 (2017)Google Scholar
  236. 22.236
    B. Roubinet, M.L. Bossi, P. Alt, M. Leutenegger, H. Shojaei, S. Schnorrenberg, S. Nizamov, M. Irie, V.N. Belov, S.W. Hell: Carboxylated photoswitchable diarylethenes for biolabeling and super-resolution RESOLFT microscopy, Angew. Chem. Int. Ed. 55(49), 15429–15433 (2016)Google Scholar
  237. 22.237
    H. Ta, J. Keller, M. Haltmeier, S.K. Saka, J. Schmied, F. Opazo, P. Tinnefeld, A. Munk, S.W. Hell: Mapping molecules in scanning far-field fluorescence nanoscopy, Nat. Commun. 6, 7977 (2015)Google Scholar
  238. 22.238
    S.W. Hell: Nanoscopy with focused light (Nobel Lecture), Angew. Chem. Int. Ed. 54(28), 8054–8066 (2015)Google Scholar
  239. 22.239
    F. Balzarotti, Y. Eilers, K.C. Gwosch, A.H. Gynnå, V. Westphal, F.D. Stefani, J. Elf, S.W. Hell: Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes, Science 355, 606–612 (2017)Google Scholar
  240. 22.240
    Y. Eilers, H. Ta, K.C. Gwosch, F. Balzarotti, S.W. Hell: MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution, Proc. Natl. Acad. Sci. USA 115(24), 6117–6122 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Steffen J. Sahl
    • 1
    Email author
  • Andreas Schönle
    • 2
  • Stefan W. Hell
    • 3
  1. 1.Dept. of NanoBiophotonicsMax Planck Institute for Biophysical ChemistryGöttingenGermany
  2. 2.Abberior Instruments GmbHGöttingenGermany
  3. 3.Dept. of NanoBiophotonics/Dept. of Optical NanoscopyMax Planck Institute for Biophysical Chemistry & Max Planck Institute for Medical ResearchGöttingenGermany

Personalised recommendations