Springer Handbook of Microscopy pp 605-624 | Cite as
Model-Based Electron Microscopy
- 1 Citations
- 5.1k Downloads
Abstract
The growing interest in materials design and control of nanostructures explains the need for precise determination of the atomic arrangement of non-periodic structures. This includes, for example, locating atomic column positions with a precision in the picometer range, a precise determination of the chemical composition of materials, and counting the number of atoms with single atom sensitivity. In order to extract these quantitative measurements from atomic resolution (scanning) transmission electron microscopy () images, statistical analysis methods are needed. For this purpose, statistical parameter estimation theory has been shown to provide reliable results. In this theory, observations are purely considered as data planes, from which structure parameters have to be determined using a parametric model describing the images. This chapter summarizes the underlying theory and highlights some of the recent applications of quantitative model-based (S)TEM.
Notes
Acknowledgements
The author would like to acknowledge all colleagues who contributed to this work over the years, in particular S. Bals, K.J. Batenburg, A. De Backer, A. De wael, R. Erni, A.J. den Dekker, J. Gonnissen, L. Jones, G.T. Martinez, P.D. Nellist, A. Rosenauer, M.D. Rossell, D. Schryvers, J. Sijbers, K. van den Bos, D. Van Dyck, G. Van Tendeloo, and J. Verbeeck. The author also expresses many thanks for all fruitful and enlightening theoretical discussions, as well as all the shared experimental expertise and knowledge. Sincere thanks are due to A. van den Bos, who unfortunately passed away too soon, for his enthusiastic and expert guidance in the author's understanding of statistical parameter estimation theory.
References
- D. Zanchet, B.D. Hall, D. Ugarte: X-ray characterization of nanoparticles. In: Characterization of Nanophase Materials, ed. by Z.L. Wang (Wiley, Weinheim 2001) pp. 13–36Google Scholar
- J.C.H. Spence: The future of atomic resolution electron microscopy for materials science, Mater. Sci. Eng. 26(1/2), 1–49 (1999)Google Scholar
- R. Henderson: The potential and limitations of neutrons, electrons and x-rays for atomic resolution microscopy of unstained biological molecules, Q. Rev. Biophys. 28, 171–193 (1995)Google Scholar
- J.P. Locquet, J. Perret, J. Fompeyrine, E. Machler, J.W. Seo, G. Van Tendeloo: Doubling the critical temperature of La1.9Sr0.1CuO4, Nature 394, 453–456 (1998)Google Scholar
- D.A. Muller, M.J. Mills: Electron microscopy: Probing the atomic structure and chemistry of grain boundaries, interfaces and defects, Mater. Sci. Eng. A 260, 12–28 (1999)Google Scholar
- M. Springborg: Methods of Electronic-Structure Calculations: From Molecules to Solids (Wiley, Hoboken 2000)Google Scholar
- G.B. Olson: Designing a new material world, Science 288, 993–998 (2000)Google Scholar
- D.A. Muller: Why changes in bond lengths and cohesion lead to core-level shifts in metals, and consequences for the spatial difference method, Ultramicroscopy 78, 163–174 (1999)Google Scholar
- C. Kisielowski, E. Principe, B. Freitag, D. Hubert: Benefits of microscopy with super resolution, Physica B 308–310, 1090–1096 (2001)Google Scholar
- Y. Wada: Atom electronics: A proposal of nano-scale device based on atom/molecule switching, Microelectron. Eng. 30, 375–382 (1996)Google Scholar
- G.B. Olson: Computational design of hierarchically structured materials, Science 277, 1237–1242 (1997)Google Scholar
- M.A. Reed, J.M. Tour: Computing with molecules, Sci. Am. 282, 68–75 (2000)Google Scholar
- N.D. Browning, I. Arslan, P. Moeck, T. Topuria: Atomic resolution scanning transmission electron microscopy, Phys. Status Solidi (b) 227, 229–245 (2001)Google Scholar
- M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban: Electron microscopy image enhanced, Nature 392, 768–769 (1998)Google Scholar
- K. Urban: Studying atomic structures by aberration-corrected transmission electron microscopy, Science 321, 506–510 (2008)Google Scholar
- C.L. Jia, S.B. Mi, K. Urban, I. Vrejoiu, M. Alexe, D. Hesse: Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films, Nat. Mater. 7, 57–61 (2008)Google Scholar
- C.L. Jia, S.B. Mi, M. Faley, U. Poppe, J. Schubert, K. Urban: Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy, Phys. Rev. B 79, 081405 (2009)Google Scholar
- R. Erni, M.D. Rossell, C. Kisielowski, U. Dahmen: Atomic resolution imaging with a sub-50 pm electron probe, Phys. Rev. Lett. 102, 096101 (2009)Google Scholar
- D. Van Dyck, S. Van Aert, A.J. den Dekker, A. van den Bos: Is atomic resolution transmission electron microscopy able to resolve and refine amorphous structures?, Ultramicroscopy 98(1), 27–42 (2003)Google Scholar
- N. Shibata, Y. Kohno, S.D. Findlay, H. Sawada, Y. Kondo, Y. Ikuhara: New area detector for atomic-resolution scanning transmission electron microscopy, J. Electron Microsc. 59(6), 473–479 (2010)Google Scholar
- R. Hovden, D.A. Muller: Efficient elastic imaging of single atoms on ultrathin supports in a scanning transmission electron microscope, Ultramicroscopy 109, 59–65 (2012)Google Scholar
- J. Gonnissen, A. De Backer, A.J. den Dekker, G.T. Martinez, A. Rosenauer, J. Sijbers, S. Van Aert: Optimal experimental design for the detection of light atoms from high-resolution scanning transmission electron microscopy images, Appl. Phys. Lett. 105, 063116 (2014)Google Scholar
- A. De Backer, A. De wael, J. Gonnissen, S. Van Aert: Optimal experimental design for nano-particle atom-counting from high-resolution STEM images, Ultramicroscopy 151, 46–55 (2015)Google Scholar
- H. Yang, T.J. Pennycook, P.D. Nellist: Efficient phase contrast imaging in STEM using a pixelated detector. Part II: Optimisation of imaging conditions, Ultramicroscopy 151, 232–239 (2015)Google Scholar
- R. Ishikawa, A.R. Lupini, S.D. Findlay, S.J. Pennycook: Quantitative annular dark field electron microscopy using single electron signals, Microsc. Microanal. 20, 99–110 (2014)Google Scholar
- A.J. den Dekker, S. Van Aert, D. Van Dyck, A. van den Bos: Maximum likelihood estimation of structure parameters from high resolution electron microscopy image. Part I: A theoretical framework, Ultramicroscopy 104(2), 83–106 (2005)Google Scholar
- S. Van Aert, A.J. den Dekker, A. van den Bos, D. Van Dyck, J.H. Chen: Maximum likelihood estimation of structure parameters from high resolution electron microscopy images. Part II: A practical example, Ultramicroscopy 104(2), 107–125 (2005)Google Scholar
- S. Van Aert, A. De Backer, G.T. Martinez, A.J. den Dekker, D. Van Dyck, S. Bals, G. Van Tendeloo: Advanced electron crystallography through model-based imaging, IUCrJ 3, 71–83 (2016)Google Scholar
- A. van den Bos: Parameter Estimation for Scientists and Engineers (Wiley, Hoboken 2007)Google Scholar
- A.J. den Dekker, J. Gonnissen, A. De Backer, J. Sijbers, S. Van Aert: Estimation of unknown structure parameters from high-resolution (S)TEM images: What are the limits?, Ultramicroscopy 134, 34–43 (2013)Google Scholar
- A. van den Bos, A.J. den Dekker: Resolution reconsidered—Conventional approaches and an alternative, Adv. Imaging Electron Phys. 117, 241–360 (2001)Google Scholar
- G.A.F. Seber, C.J. Wild: Nonlinear Regression (Wiley, Hoboken 1989)Google Scholar
- H. Cramér: Mathematical Methods of Statistics (Princeton Univ. Press, Princeton 1946)Google Scholar
- P.D. Nellist, S.J. Pennycook: The principles and interpretation of annular dark-field Z-contrast imaging, Adv. Imaging Electron Phys. 113, 147–203 (2000)Google Scholar
- D. Van Dyck: High-resolution electron microscopy, Adv. Imaging Electron Phys. 123, 105–171 (2002)Google Scholar
- A. De Backer, K.H.W. van den Bos, W. Van den Broek, J. Sijbers, S. Van Aert: StatSTEM: An efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images, Ultramicroscopy 171, 104–116 (2016)Google Scholar
- A.J. den Dekker, J. Sijbers, D. Van Dyck: How to optimize the design of a quantitative HREM experiment so as to attain the highest precision?, J. Microsc. 194, 95–104 (1999)Google Scholar
- E. Bettens, D. Van Dyck, A.J. den Dekker, J. Sijbers, A. van den Bos: Model-based two-object resolution from observations having counting statistics, Ultramicroscopy 77, 37–48 (1999)Google Scholar
- A.J. den Dekker, S. Van Aert, D. Van Dyck, A. van den Bos, P. Geuens: Does a monochromator improve the precision in quantitative HRTEM?, Ultramicroscopy 89, 275–290 (2001)Google Scholar
- S. Van Aert, A.J. den Dekker, D. Van Dyck, A. van den Bos: High-resolution electron microscopy and electron tomography: Resolution versus precision, J. Struct. Biol. 138, 21–33 (2002)Google Scholar
- S. Van Aert, A.J. den Dekker, A. van den Bos, D. Van Dyck: High resolution electron microscopy: From imaging toward measuring, IEEE Trans. Instrum. Meas. 51(4), 611–615 (2002)Google Scholar
- S. Van Aert, A.J. den Dekker, D. Van Dyck, A. van den Bos: Optimal experimental design of STEM measurement of atom column positions, Ultramicroscopy 90(4), 273–289 (2002)Google Scholar
- S. Van Aert, D. Van Dyck, A.J. den Dekker: Resolution of coherent and incoherent imaging systems reconsidered—Classical criteria and a statistical alternative, Opt. Express 14, 3830–3839 (2006)Google Scholar
- A. Wang, S. Van Aert, P. Goos, D. Van Dyck: Precision of 3-D atomic scale measurements for HRTEM images: What are the limits?, Ultramicroscopy 114, 20–30 (2012)Google Scholar
- W. Van den Broek, S. Van Aert, P. Goos, D. Van Dyck: Throughput maximization of particle radius measurements through balancing size versus current of the electron probe, Ultramicroscopy 111, 940–947 (2011)Google Scholar
- S.M. Kay: Detection Theory, Fundamentals of Statistical Signal Processing, Vol. 2 (Prentice-Hall, Upper Saddle River 2009)Google Scholar
- J. Gonnissen, A. De Backer, A.J. den Dekker, J. Sijbers, S. Van Aert: Atom-counting in high resolution electron microscopy: TEM or STEM – That's the question, Ultramicroscopy 174, 112–120 (2017)Google Scholar
- R.I. Jennrich: An Introduction to Computational Statistics—Regression Analysis (Prentice-Hall, Upper Saddle River 1995)Google Scholar
- A. Stuart, K. Ord: Kendall's Advanced Theory of Statistics (Arnold, London 1994)Google Scholar
- B.R. Frieden: Physics from Fisher Information—A Unification (Cambridge Univ. Press, Cambridge 1998)Google Scholar
- Lord Rayleigh: Wave theory of light. In: Scientific Papers, Vol. 3, ed. by J.W. Strutt (Cambridge Univ. Press, Cambridge 1902) pp. 47–189Google Scholar
- M.A. O'Keefe: “Resolution” in high-resolution electron microscopy, Ultramicroscopy 47, 282–297 (1992)Google Scholar
- J. Gonnissen, A. De Backer, A.J. den Dekker, J. Sijbers, S. Van Aert: Detecting and locating light atoms from high-resolution STEM images: The quest for a single optimal design, Ultramicroscopy 170, 128–138 (2016)Google Scholar
- R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa, E. Abe: Direct imaging of hydrogen-atom columns in a crystal by annular bright field electron microscopy, Nat. Mater. 10, 278–281 (2011)Google Scholar
- A. Rosenauer, M. Schowalter: STEM SIM—A new software tool for simulation of STEM HAADF Z-contrast imaging. In: Microscopy of Semiconducting Materials, Springer Proceedings in Physics, Vol. 120, ed. by A.G. Cullis, P.A. Midgley (Springer, Dorchester 2008) pp. 170–172Google Scholar
- D. Van Dyck, W. Coene: A new procedure for wave function restoration in high resolution electron microscopy, Optik 77, 125–128 (1987)Google Scholar
- H. Lichte: Electron holography approaching atomic resolution, Ultramicroscopy 20, 293–304 (1986)Google Scholar
- D. Van Dyck, M. Op de Beeck, W. Coene: A new approach to object wave function reconstruction in electron microscopy, Optik 93, 103–107 (1993)Google Scholar
- A.I. Kirkland, W.O. Saxton, K.L. Chau, K. Tsuno, M. Kawasaki: Super-resolution by aperture synthesis: Tilt series reconstruction in CTEM, Ultramicroscopy 57, 355–374 (1995)Google Scholar
- S. Haigh, H. Sawada, A.I. Kirkland: Optimal tilt magnitude determination for aberration-corrected super resolution exit wave reconstruction, Philos. Trans. R. Soc. A 367, 3755–3771 (2009)Google Scholar
- W. Coene, G. Janssen: Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy, Phys. Rev. Lett. 69(26), 3743–3746 (1992)Google Scholar
- C. Kisielowski, C.J.D. Hetherington, Y.C. Wang, R. Kilaas, M.A. O'Keefe, A. Thust: Imaging columns of light elements carbon, nitrogen and oxygen with sub Ångstom resolution, Ultramicroscopy 89, 243–263 (2001)Google Scholar
- C.L. Jia, A. Thust: Investigation of atomic displacements at a Σ3 {111} twin boundary in BaTiO3 by means of phase-retrieval electron microscopy, Phys. Rev. Lett. 82(25), 5052–5055 (1999)Google Scholar
- J. Ayache, C. Kisielowski, R. Kilaas, G. Passerieux, S. Lartigue-Korinek: Determination of the atomic structure of a Σ13 SrTiO3 grain boundary, J. Mater. Sci. 40, 3091–3100 (2005)Google Scholar
- S. Bals, S. Van Aert, G. Van Tendeloo, D. Ávila-Brande: Statistical estimation of atomic positions from exit wave reconstruction with a precision in the picometer range, Phys. Rev. Lett. 96, 096106 (2006)Google Scholar
- S. Van Aert, S. Turner, R. Delville, D. Schryvers, G. Van Tendeloo, E.K.H. Salje: Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy, Adv. Mater. 24, 523–527 (2012)Google Scholar
- L. Goncalves-Ferreira, S.A.T. Redfern, E. Artacho, E.K.H. Salje: Ferrielectric twin walls in CaTiO3, Phys. Rev. Lett. 101, 097602 (2008)Google Scholar
- C.L. Jia, M. Lentzen, K. Urban: Atomic-resolution imaging of oxygen in perovskite ceramics, Science 299, 870–873 (2003)Google Scholar
- C.L. Jia, L. Houben, A. Thust, J. Barthel: On the benefit of the negative-spherical-aberration imaging technique for quantitative HRTEM, Ultramicroscopy 110, 500–505 (2010)Google Scholar
- C.L. Jia, S.B. Mi, K. Urban, I. Vrejoiu, M. Alexe, D. Hesse: Effect of a single dislocation in a heterostructure layer on the local polarization of a ferroelectric layer, Phys. Rev. Lett. 102, 117601 (2009)Google Scholar
- S. Van Aert, J. Verbeeck, R. Erni, S. Bals, M. Luysberg, D. Van Dyck, G. Van Tendeloo: Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy, Ultramicroscopy 109, 1236–1244 (2009)Google Scholar
- M. Retsky: Observed single atom elastic cross sections in a scanning electron microscope, Optik 41, 127 (1974)Google Scholar
- K.E. MacArthur, T.J. Pennycook, E. Okunishi, A.J. D'Alfonso, N.R. Lugg, L.J. Allen, P.D. Nellist: Probe integrated scattering cross sections in the analysis of atomic resolution HAADF STEM images, Ultramicroscopy 133, 109–119 (2013)Google Scholar
- G.T. Martinez, A. De Backer, A. Rosenauer, J. Verbeeck, S. Van Aert: The effect of probe inaccuracies on the quantitative model-based analysis of high angle annular dark field scanning transmission electron microscopy images, Micron 63, 57–63 (2014)Google Scholar
- K.E. MacArthur, A.J. D'Alfonso, D. Ozkaya, L.J. Allen, P.D. Nellist: Optimal ADF STEM imaging parameters for tilt-robust image quantification, Ultramicroscopy 156, 1–8 (2015)Google Scholar
- J.M. LeBeau, S.D. Findlay, L.J. Allen, S. Stemmer: Quantitative atomic resolution scanning transmission electron microscopy, Phys. Rev. Lett. 100, 206101 (2008)Google Scholar
- A. Rosenauer, K. Gries, K. Müller, A. Pretorius, M. Schowalter, A. Avramescu, K. Engl, S. Lutgen: Measurement of specimen thickness and composition in AlxGa1-xN/GaN using high-angle annular dark field images, Ultramicroscopy 109, 1171–1182 (2009)Google Scholar
- J.M. LeBeau, S.D. Findlay, L.J. Allen, S. Stemmer: Standardless atom counting in scanning transmission electron microscopy, Nano Lett. 10, 4405–4408 (2010)Google Scholar
- G.T. Martinez, A. Rosenauer, A. De Backer, J. Verbeeck, S. Van Aert: Quantitative composition determination at the atomic level using model-based high-angle annular dark field scanning transmission electron microscopy, Ultramicroscopy 137, 12–19 (2014)Google Scholar
- T. Grieb, K. Müller, R. Fritz, M. Schowalter, N. Neugebohrn, N. Knaub, K. Volz, A. Rosenauer: Determination of the chemical composition of GaNAs using STEM HAADF imaging and STEM strain state analysis, Ultramicroscopy 117, 15–23 (2012)Google Scholar
- G. McLachlan, D. Peel: Finite Mixture Models, Probability and Statistics (Wiley, Hoboken 2000)Google Scholar
- S. Van Aert, K.J. Batenburg, M.D. Rossell, R. Erni, G. Van Tendeloo: Three dimensional atomic imaging of crystalline nanoparticles, Nature 470, 374–377 (2011)Google Scholar
- A. De Backer, G.T. Martinez, A. Rosenauer, S. Van Aert: Atom counting in HAADF STEM using a statistical model-based approach: Methodology, possibilities, and inherent limitations, Ultramicroscopy 134, 23–33 (2013)Google Scholar
- S. Van Aert, A. De Backer, G.T. Martinez, B. Goris, S. Bals, G. Van Tendeloo, A. Rosenauer: Procedure to count atoms with trustworthy single-atom sensitivity, Phys. Rev. B 87, 064107 (2013)Google Scholar
- A. De Backer, G.T. Martinez, K.E. MacArthur, L. Jones, A. Béché, P.D. Nellist, S. Van Aert: Dose limited reliability of quantitative annular dark field scanning transmission electron microscopy for nano-particle atom-counting, Ultramicroscopy 151, 56–61 (2015)Google Scholar
- A. Rosenauer, T. Mehrtens, K. Müller, K. Gries, M. Schowalter, P.V. Satyam, S. Bley, C. Tessarek, D. Hommel, K. Sebald, M. Seyfried, J. Gutowski, A. Avramescu, K. Engl, S. Lutgen: Composition mapping in InGaN by scanning transmission electron microscopy, Ultramicroscopy 111, 1316–1327 (2011)Google Scholar
- A. De wael, A. De Backer, L. Jones, P.D. Nellist, S. Van Aert: Hybrid statistics-simulations based method for atom-counting from ADF STEM images, Ultramicroscopy 177, 69–77 (2017)Google Scholar
- K.H.W. van den Bos, A. De Backer, G.T. Martinez, N. Winckelmans, S. Bals, P.D. Nellist, S. Van Aert: Unscrambling mixed elements using high angle annular dark field scanning transmission electron microscopy, Phys. Rev. Lett. 116, 246101 (2016)Google Scholar
- D. Van Dyck, M. Op de Beeck: A simple intuitive theory for electron diffraction, Ultramicroscopy 64, 99–107 (1996)Google Scholar
- J.M. Cowley, J.C.H. Spence, V.V. Smirnov: The enhancement of electron microscope resolution by use of atomic focusers, Ultramicroscopy 68, 135–148 (1997)Google Scholar
- Z. Saghi, X. Xu, G. Möbus: Model based atomic resolution tomography, J. Appl. Phys. 106, 024304 (2009)Google Scholar
- J.R. Jinscheck, K.J. Batenburg, H.A. Calderon, R. Kilaas, V. Radmilovic, C. Kisielowski: 3-D reconstruction of the atomic positions in a simulated gold nanocrystal based on discrete tomography: Prospects of atomic resolution electron tomography, Ultramicroscopy 108, 589–604 (2008)Google Scholar
- S. Bals, M. Casavola, M.A. van Huis, S. Van Aert, K.J. Batenburg, G. Van Tendeloo, D. Vanmaekelbergh: 3-D atomic imaging of colloidal core-shell nanocrystals, Nano Lett. 11(8), 3420–3424 (2011)Google Scholar
- S. Bals, S. Van Aert, C.P. Romero, K. Lauwaet, M.J. Van Bael, B. Schoeters, B. Partoens, E. Yücelen, P. Lievens, G. Van Tendeloo: Atomic scale dynamics of ultrasmall germanium clusters, Nat. Commun. 3, 897 (2012)Google Scholar
- Z.Y. Li, N.P. Young, M. Di Vece, S. Palomba, R.E. Palmer, A.L. Bleloch, B.C. Curley, R.L. Johnston, J. Jiang, J. Yuan: 3-D atomic-scale structure of size-selected gold nanoclusters, Nature 451, 46–48 (2008)Google Scholar
- L. Jones, K.E. MacArthur, V.T. Fauske, A.T.J. van Helvoort, P.D. Nellist: Rapid estimation of catalyst nanoparticle morphology and atomic-coordination by high-resolution Z-contrast electron microscopy, Nano Lett. 14, 6336–6341 (2014)Google Scholar
- J.J. Geuchies, C. van Overbeek, W.H. Evers, B. Goris, A. de Backer, A.P. Gantapara, F.T. Rabouw, J. Hilhorst, J.L. Peters, O. Konovalov, A.V. Petukhov, M. Dijkstra, L.D.A. Siebbeles, S. Van Aert, S. Bals, D. Vanmaekelbergh: In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals, Nat. Mater. 15, 1248–1254 (2016)Google Scholar
- M. Yu, A.B. Yankovich, A. Kaczmarowski, D. Morgan, P.M. Voyles: Integrated computational and experimental structure refinement for nanoparticles, ACS Nano 10, 4031–4038 (2016)Google Scholar