Atomic Resolution Transmission Electron Microscopy

  • Angus I. KirklandEmail author
  • Shery L.-Y. Chang
  • John L. Hutchison
Part of the Springer Handbooks book series (SHB)


This chapter provides an overview of the essential theory and instrumentation relevant to high-resolution imaging in the transmission electron microscope together with selected application examples. It begins with a brief historical overview of the field. Subsequently, the theory of image formation and resolution limits are discussed. We then discuss the effects of the objective lens through the wave aberration function and coherence of the electron source. In the third section, the key instrument components important for HRTEM imaging are discussed; namely, the objective lens, electron sources and monochromators, energy filters and detectors. The theory and experimental implementation of exit wavefunction reconstruction from HRTEM images is detailed in the fourth section, including examples taken from studies of complex oxides. The final section treats the simulation of HRTEM images with particular reference to the widely adopted multislice method.


  1. M. Knoll, E. Ruska: Das Elektronenmikroskop, Z. Phys. 78, 318–339 (1932)Google Scholar
  2. M. Knoll, E. Ruska: Beitrag zur geometrischen Elektronenoptik. I, Ann. Phys. 12, 607–640 (1932)Google Scholar
  3. M. Knoll, E. Ruska: Beitrag zur geometrischen Elektronenoptik. II, Ann. Phys. 12, 641–661 (1932)Google Scholar
  4. C. Hall: Introduction to Electron Microscopy (McGraw-Hill, New York 1966)Google Scholar
  5. P. Hawkes (Ed.): The Beginnings of Electron Microscopy, Advanced Electronics and Electron Physics, Vol. Supplement 16 (Academic Press, Cambridge 1985)Google Scholar
  6. H. Fujita: History of Electron Microscopes (Komiyama, Tokyo 1986)Google Scholar
  7. E. Ruska: The development of the electron microscope and of electron microscopy (Nobel lecture), Angew. Chem. Int. Ed. Engl. 26, 595–608 (1987)Google Scholar
  8. R. Burge: Mechanisms of contrast and image formation of biological specimens in the transmission electron microscope, J. Microsc. 98, 251–285 (1973)Google Scholar
  9. N. Unwin, R. Henderson: Molecular structure determination by electron microscopy of unstained crystalline specimens, J. Mol. Biol 94, 425–432 (1975)Google Scholar
  10. R. Henderson: The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules, Q. Rev. Biophys. 28, 171–193 (1995)Google Scholar
  11. J. Koehler (Ed.): Biological Electron Microscopy Advanced Techniques I (Springer, Berlin 1973)Google Scholar
  12. J. Koehler (Ed.): Biological Electron Microscopy Advanced Techniques II (Springer, Berlin 1978)Google Scholar
  13. J. Koehler (Ed.): Biological Electron Microscopy Advanced Techniques III (Springer, Berlin 1986)Google Scholar
  14. D.J. Smith, P. Lu: Characterization of compound semiconductors by high-resolution electron-microscopy, Inst. Phys. Conf. Ser. 117, 1–10 (1991)Google Scholar
  15. D.J. Smith, R. Glaisher, P. Lu: Surface polarity determination in \(\langle 110\rangle\)-orientated compound semiconductors high-resolution electron microscopy, Philos. Mag. Lett. 59, 69–75 (1989)Google Scholar
  16. R.W. Glaisher, A.E.C. Spargo: Aspects of HREM of tetrahedral semiconductors, Ultramicroscopy 18, 323–334 (1985)Google Scholar
  17. R.W. Glaisher, A.E.C. Spargo, D.J. Smith: A systematic analysis of HREM imaging of elemental semiconductors, Ultramicroscopy 27, 35–51 (1989)Google Scholar
  18. B.C. de Cooman, N.-H. Cho, Z. Elgat, C.B. Carter: HREM of compound semiconductors, Ultramicroscopy 18, 305–312 (1985)Google Scholar
  19. A. Olsen, J. Spence: Distinguishing dissociated glide and shuffle set dislocations by high resolution electron microscopy, Philos. Mag. A 43, 945–965 (1981)Google Scholar
  20. D.J. Smith, T. Aoki, J.K. Furdyna, X. Liu, M.R. McCartney, Y.-H. Zhang: Atomic-scale characterization of (mostly zincblende) compound semiconductor heterostructures, J. Phys. Conf. Ser. 471, 012005 (2013)Google Scholar
  21. A. Bourret, J. Rouvière, J. Penisson: Structure determination of planar defects in crystals of germanium and molybdenum by HREM, Acta Crystallogr. A 44, 838–847 (1988)Google Scholar
  22. G. Gutekunst, J. Mayer, M. Rühle: The niobium/sapphire interface: Structural studies by HREM, Scr. Metall. Mater. 31, 1097–1102 (1994)Google Scholar
  23. J. Penisson, T. Nowicki, M. Biscondi: Atomic structure of a tilt grain boundary in a molybdenum bicrystal studied by 400 kV high-resolution electron microscopy, Philos. Mag. A 58, 947–956 (1988)Google Scholar
  24. W. Krakow: Atomic structure of a \(\Sigma=21\) grain boundary, J. Mater. Res. 5, 2658–2662 (1990)Google Scholar
  25. Y. Ishida, H. Ichinose, M. Mori, M. Hashimoto: Identification of grain boundary atomic structure in gold by matching lattice imaging micrographs with simulated images, Trans. Jpn. Inst. Met. 24, 349–359 (1983)Google Scholar
  26. G. Thomas (Ed.): Transmission Electron Microscopy of Metals (Wiley, New York 1962)Google Scholar
  27. S. Amelinckx, O. Milat, G. van Tendeloo: Selective imaging of sublattices in complex structures, Ultramicroscopy 51, 90–108 (1993)Google Scholar
  28. D.J. Smith, J. Barry: Solid-state chemistry. In: High-Resolution Transmission Electron Microscopy, ed. by P. Buseck, J. Cowley, L. Eyring (Oxford Univ. Press, Oxford 1989) pp. 378–476Google Scholar
  29. M. Lundberg, J. Hutchison, D. Smith: The structure of Bi15Ti9Fe11O57 and related compounds derived by high-resolution electron microscopy, J. Solid State Chem. 80, 178 (1989)Google Scholar
  30. L. Eyring: Materials science: Metals, ceramics, and semiconductors. In: High-Resolution Transmission Electron Microscopy, ed. by P. Buseck, J. Cowley, L. Eyring (Oxford Univ. Press, Oxford 1989) pp. 477–518Google Scholar
  31. P. Buseck, J. Cowley, L. Eyring: High Resolution Transmission Electron Microscopy and Related Techniques (Oxford Univ. Press, Oxford 1989)Google Scholar
  32. D.J. Smith: The realization of atomic resolution with the electron microscope, Rep. Prog. Phys. 60, 1513–1580 (1997)Google Scholar
  33. G. van Tendeloo: High resolution electron microscopy in materials research, J. Mater. Chem. 8, 797–808 (1998)Google Scholar
  34. J. Spence: The future of atomic resolution electron microscopy in materials science, Mater. Sci. Eng. R26, 1–49 (1999)Google Scholar
  35. W. Krakow, D. Smith, L. Hobbs (Eds.): Electron Microscopy of Materials (North Holland, Amsterdam 1984)Google Scholar
  36. F. Ernst, M. Rühle: Present developments in high-resolution transmission electron microscopy, Curr. Opin. Solid State Matter 2, 469–476 (1997)Google Scholar
  37. F. Ernst, M. Rühle (Eds.): High Resolution Imaging and Spectrometry of Materials (Springer, Berlin 2003)Google Scholar
  38. J.M. Zuo, J.C.H. Spence: Advanced Transmission Electron Microscopy (Springer, Heidelberg 2017)Google Scholar
  39. D. Shindo, K. Hiraga: High Resolution Electron Microscopy for Materials Science (Springer, Tokyo 1998)Google Scholar
  40. D.J. Smith: Ultimate resolution in the electron microscope?, Mater. Today 11(Suppl.), 30–38 (2008)Google Scholar
  41. S. Iijima: Helical microtubules of graphitic carbon, Nature 354, 56–58 (1991)Google Scholar
  42. N. Yao, Z. Wang (Eds.): Handbook of Microscopy for Nanotechnology (Springer, Berlin 2005)Google Scholar
  43. A. Bachmatiuk, J. Zhao, S.M. Gorantla, I.G. Gonzalez Martinez, J. Wiedermann, C. Lee, J. Eckert, M.H. Rummeli: Low voltage transmission electron microscopy of graphene, Small 11, 515–542 (2015)Google Scholar
  44. J.H. Warner, E.R. Margine, M. Mukai, A.R. Robertson, F. Giustino, A.I. Kirkland: Dislocation-driven deformations in graphene, Science 337, 209–212 (2012)Google Scholar
  45. F.R. Eder, J. Kotakoski, U. Kaiser, J.C. Meyer: A journey from order to disorder—Atom by atom transformation from graphene to a 2-D carbon glass, Sci. Rep. 4, 4060 (2014)Google Scholar
  46. P.L. Gai: In-situ environmental transmission electron microscopy. In: Nanocharacterisation, 1st edn., ed. by A.I. Kirkland, J.L. Hutchison (RSC, Cambridge 2007) pp. 268–290Google Scholar
  47. J.M. Thomas: Complex terpenes in one pot, Nat. Catal. 1, 2–5 (2018)Google Scholar
  48. F. Haguenau, P.W. Hawkes, J.L. Hutchison, B. Satiat-Jeunemaître, G.T. Simon, D.B. Williams: Key events in the history of electron microscopy, Microsc. Microanal. 9, 96–138 (2003)Google Scholar
  49. P. Hawkes: The correction of electron lens aberrations, Ultramicroscopy 156, 1–64 (2015)Google Scholar
  50. E. Ruska: Über Fortschritte im Bau und in der Leistung des magnetischen Elektronenmikroskops, Z. Phys. 87, 580–602 (1934)Google Scholar
  51. B. von Borries, E. Ruska: Ein Übermikroskop für Forschungsinstitute, Naturwissenschaften 27, 577–582 (1939)Google Scholar
  52. L. Marton: La microscopie electronique des objects biologiques, Bull. Acad. R. Belg. 20, 439–446 (1934)Google Scholar
  53. J. Menter: The direct study by electron microscopy of crystal lattices and their imperfections, Proc. R. Soc. A 236, 119–135 (1956)Google Scholar
  54. T. Komoda: Electron microscopic observation of crystal lattices on the level with atomic dimension, Jpn. J. Appl. Phys. 5, 603–607 (1966)Google Scholar
  55. J. Allpress, J. Sanders, A. Wadsley: Multiple phase formation in the binary system Nb2O5–WO3. VI. Electron microscopic observation and evaluation of non-periodic shear structures, Acta Crystallogr. B 25, 1156–1164 (1969)Google Scholar
  56. J.M. Cowley, S. Iijima: Electron microscope image contrast for thin crystal, Z. Naturforsch. A 27, 445–451 (1972)Google Scholar
  57. N. Uyeda, E. Kobayashi, Y. Suito, M. Harada, J. Watanabe: Molecular image resolution in electron microscopy, J. Appl. Phys. 43, 5181–5189 (1972)Google Scholar
  58. V. Cosslett, R. Camps, O. Saxton, D. Smith, W. Nixon, H. Ahmed, J. Catto, J. Cleaver, K. Smith, A. Timbs, P. Turner, P. Ross: Atomic resolution with a 600-kV electron microscope, Nature 281, 49–51 (1979)Google Scholar
  59. V.E. Cosslett: High-voltage electron microscopy, J. R. Microsc. Soc. 81, 1–10 (1961)Google Scholar
  60. M. Hirabayashi, K. Hiraga, D. Shindo: High resolution imaging by 1 MV electron microscopy, Ultramicroscopy 9, 197–202 (1982)Google Scholar
  61. L.D. Marks: Experimental studies of small particle structures, Rep. Prog. Phys. 57, 603–649 (1994)Google Scholar
  62. L.A. Bursill, D.J. Smith: Interaction of small and extended defects in nonstoichiometric oxides, Nature 309, 319–321 (1984)Google Scholar
  63. V.E. Cosslett: Current developments in high voltage electron microscopy, J. Microsc. 100, 233–246 (1974)Google Scholar
  64. Y. Harada: In commemoration of journal of electron microscopy's 60th anniversary, Microscopy 60, S279–S282 (2011)Google Scholar
  65. R. Gronsky, G. Thomas: Instrumentation at the National Center for Electron Microscopy: The atomic resolution microscope. In: Proc. 41st Annu. Meet. Electron Microsc. Soc. Am., ed. by G. Bailey (San Francisco, San Francisco 1983) p. 310Google Scholar
  66. Y. Matsui, S. Horiuchi, Y. Bando, Y. Kitami, M. Yokoyama, S. Suehara: Ultra-high-resolution HVEM (H-1500) newly constructed at NIRIM, Ultramicroscopy 39, 8–20 (1991)Google Scholar
  67. J. Hutchison, T. Honda, E. Boyes: Atomic imaging of semiconductors, JEOL News E24, 9–13 (1986)Google Scholar
  68. F. Phillip, R. Höschen, M. Osaki, G. Mobus, M. Riihle: New high-voltage atomic resolution microscope approaching 1 Å point resolution installed in Stuttgart, Ultramicroscopy 56, 1–10 (1994)Google Scholar
  69. C. Allen, D. Dorignac: Survey of high-voltage ‘electron microscopy' worldwide. In: Electron Microsc. 1998 Proc. 14th ICEM, ed. by H.A.C. Benavidez, M.J. Yacaman (IOP, Bristol 1998) pp. 275–276Google Scholar
  70. T. Honda, T. Tomita, T. Kaneyama, Y. Ishida: Field emission ultrahigh-resolution analytical electron microscop, Ultramicroscopy 54, 132–144 (1994)Google Scholar
  71. M. Otten, W. Coene: High-resolution imaging on a field emission TEM, Ultramicroscopy 48, 77–91 (1993)Google Scholar
  72. H. Lichte: Electron image plane off-axis holography of atomic structures, Adv. Opt. Electron Microsc. 12, 25–91 (1991)Google Scholar
  73. H. Lichte, P. Formanek, A. Lenk, M. Linck, C. Matzeck, M. Lehmann, P. Simon: Electron holography: Applications to materials questions, Annu. Rev. Mater. Res. 37, 539–588 (2007)Google Scholar
  74. A. Orchowski, W. Rau, H. Lichte: Electron holography surmounts resolution limit of electron microscopy, Phys. Rev. Lett. 74, 399–402 (1995)Google Scholar
  75. R. Dunin-Borkowski, T. Kasama, R.J. Harrison: Electron holography of nanostructured materials. In: Nanocharacterisation, 2nd edn., ed. by A.I. Kirkland, S. Haigh (RSC, Cambridge 2015)Google Scholar
  76. U. Dahmen, R. Erni, R. Velimir, C. Kieslowski, M.-C. Rossell, P. Denes: Background, status and future of the transmission electron aberration-corrected microscope project, Philos. Trans. R. Soc. A 367, 3795–3808 (2009)Google Scholar
  77. M. Linck, P. Hartel, S. Uhlemann, F. Kahl, H. Müller, J. Zach, M. Haider, M. Niestadt, M. Bischoff, J. Biskupek, Z. Lee, T. Lehnert, F. Boerrnert, H. Rose, U. Kaiser: Chromatic aberration correction for atomic resolution TEM imaging from 20 to 80 kV, Phys. Rev. Lett. 117, 076101 (2016)Google Scholar
  78. H. Sawada, F. Hosokawa, T. Sasaki, T. Kaneyama, Y. Kondo, K. Suenaga: Aberration correctors developed under the triple C project, Adv. Imaging Electron Phys. 168, 297–336 (2011)Google Scholar
  79. J. Spence: High Resolution Electron Microscopy, 4th edn. (Oxford Univ. Press, Oxford 2013)Google Scholar
  80. L. Reimer: Transmission Electron Microscopy (Springer, Berlin 1984)Google Scholar
  81. L. Reimer: Transmission Electron Microscopy: Physics of Image Formation and Microanalysis, 4th edn. (Springer, Berlin 1997)Google Scholar
  82. J.M. Cowley: Diffraction Physics (North Holland, Amsterdam 1975)Google Scholar
  83. J.M. Cowley, A.P. Pogany: Diffuse scattering in electron diffraction patterns. I. General theory and computational methods, Acta Crystallogr. A 24, 109–116 (1968)Google Scholar
  84. H. Yoshioka: Effect of inelastic waves on electron diffraction, J. Phys. Soc. Jpn. 12, 618–628 (1957)Google Scholar
  85. J. Cowley, A. Moodie: Scattering of electrons by thin crystals, J. Phys. Soc. Jpn. 17(Suppl. B-II), 86–91 (1962)Google Scholar
  86. R. Bracewell: The Fourier Transform and Its Applications (McGraw-Hill, New York 1965)Google Scholar
  87. D. Lynch, A. Moodie, M. O'Keefe: n-Beam lattice images. V. The use of the charge-density approximation in the interpretation of lattice images, Acta Crystallogr. A 31, 300–307 (1975)Google Scholar
  88. M.A. O’Keefe: Seeing atoms with aberration-corrected sub-Ångström electron microscopy, Ultramicroscopy 108(3), 196–209 (2008)Google Scholar
  89. L.Y. Chang, F.R. Chen, J.J. Kai, A.I. Kirkland: High resolution imaging near zero CS. In: Proc. 12th Eur. Congr. Electron Microsc., Vol. 3 (2000) pp. 89–90Google Scholar
  90. P. Goodman, A.F. Moodie: Numerical evaluations of N-beam wave functions in electron scattering by the multi-slice method, Acta Crystallogr. A 30, 280–290 (1974)Google Scholar
  91. P. Self, M. O'Keefe, P. Buseck, A. Spargo: Practical computation of amplitudes and phases in electron diffraction, Ultramicroscopy 11, 35–52 (1983)Google Scholar
  92. B. Jap, R. Glaeser: The scattering of high-energy electrons. I. Feynman path-integral formulation, Acta Crystallogr. A 34, 94–102 (1978)Google Scholar
  93. D. van Dyck: High-speed computation techniques for the simulation of high resolution electron micrographs, J. Microsc. 132, 31–42 (1983)Google Scholar
  94. D. van Dyck, W. Coene: The real space method for dynamical electron diffraction calculations in high resolution electron microscopy, Ultramicroscopy 15, 29–40 (1984)Google Scholar
  95. W. Coene, D. Van Dyck: The real space method for dynamical electron diffraction calculations in high resolution electron microscopy: II. Critical analysis of the dependency on the input parameters, Ultramicroscopy 15(1-2), 41–50 (1984)Google Scholar
  96. W. Coene, D. Van Dyck: The real space method for dynamical electron diffraction calculations in high resolution electron microscopy: III. A computational algorithm for the electron propagation with its practical applications, Ultramicroscopy 15(4), 287–300 (1984)Google Scholar
  97. P. Hirsch, A. Howie, R. Nicholson, D. Pashley, M. Whelan: Electron Microscopy of Thin Crystals (Butterworths, London 1965)Google Scholar
  98. P. Stadelmann: EMS—A software package for electron diffraction analysis and HREM image simulation in materials science, Ultramicroscopy 21, 131–146 (1987)Google Scholar
  99. P. Stadelmann: HREM and convergent beam electron diffraction image simulation, Micron Microsc. Acta 22, 175–176 (1991)Google Scholar
  100. J. Spence, J. Zuo: Electron Microdiffraction (Plenum, New York 1992)Google Scholar
  101. J. Chen, D. van Dyck: Accurate multislice theory for elastic electron scattering in transmission electron microscopy, Ultramicroscopy 70, 29–44 (1997)Google Scholar
  102. E. Kirkland: Advanced Computing in Electron Microscopy (Plenum, New York 1998)Google Scholar
  103. J.M. Cowley: The electron-optical imaging of crystal lattices, Acta Crystallogr. 12, 367–375 (1959)Google Scholar
  104. J.M. Cowley: The scattering of electrons by atoms and crystals. II. The effects of finite source size, Acta Crystallogr. 12, 353–359 (1959)Google Scholar
  105. J.M. Cowley: The scattering of electrons by atoms and crystals. III. Single-crystal diffraction patterns, Acta Crystallogr. 12, 360–367 (1959)Google Scholar
  106. D. van Dyck, M. Op de Beeck: Comparison and test of HRTEM image simulation programs, Ultramicroscopy 55, 435–457 (1994)Google Scholar
  107. O. Scherzer: The theoretical resolution limit of the electron microscope, J. Appl. Phys. 20, 20–29 (1949)Google Scholar
  108. K. Hanßen: The optical transfer theory of the electron microscope: Fundamental principles and applications, Adv. Opt. Electron Microsc. 4, 1–84 (1971)Google Scholar
  109. M. O'Keefe: Resolution in high-resolution electron microscopy, Ultramicroscopy 47, 282–297 (1992)Google Scholar
  110. M.A. O'Keefe, J.V. Sanders: n-Beam lattice images. VI. Degradation of image resolution by a combination of incident-beam divergence and spherical aberration, Acta Crystallogr. A 29, 381 (1973)Google Scholar
  111. R. Fowler, L. Nordheim: Electron emission in intense electric fields, Proc. R. Soc. A 119, 173–181 (1928)Google Scholar
  112. J. Frank: Determination of source size and energy spread from electron micrographs using the method of Young's fringes, Optik 44, 379–391 (1976)Google Scholar
  113. J. Barthel, A. Thust: Quantification of the information limit of transmission electron microscopes, Phys. Rev. Lett. 101, 200801 (2008)Google Scholar
  114. P. Hawkes, E. Kasper: Wave Optics, Principles of Electron Optics, Vol. 3, 1st edn. (Academic Press, London 1994)Google Scholar
  115. O. Saxton: Observation of lens aberrations for very high-resolution electron microscopy. I. Theory, J. Microsc. 179, 201–213 (1995)Google Scholar
  116. S. Morishita, M. Mukai, K. Suenaga, H. Sawada: Atomic resolution imaging at an ultralow accelerating voltage by a monochromatic transmission electron microscope, Phys. Rev. Lett. 117, 153004 (2016)Google Scholar
  117. M. Haider, H. Müller, S. Uhlemann: Present and future hexapole aberration correctors for high-resolution electron microscopy, Adv. Imaging Electron Phys. 153, 43–120 (2008)Google Scholar
  118. M. Haider, P. Hartel, H. Müller, S. Uhlemann, J. Zach: Information transfer in a TEM corrected for spherical and chromatic aberration, Microsc. Microanal. 16, 393–408 (2010)Google Scholar
  119. H. Rose: Historical aspects of aberration correction, J. Electron Microsc. 58, 77–85 (2009)Google Scholar
  120. D. Typke, K. Dierksen: Determination of image aberrations in high-resolution electron microscopy using diffractogram and cross-correlation methods, Optik 99, 155–166 (1995)Google Scholar
  121. O. Krivanek, N. Delby, A. Lupini: Towards sub-\(\AA{}\) electron beams, Ultramicroscopy 78, 1–11 (1999)Google Scholar
  122. P. Hawkes, E. Kasper: Basic Geometrical Optics, Principles of Electron Optics, Vol. 1, 2nd edn. (Academic Press, London 2018)Google Scholar
  123. H. Rose: Correction of aperture aberrations in magnetic systems with threefold symmetry, Nucl. Instrum. Methods Phys. Res. 187, 187–199 (1981)Google Scholar
  124. H. Rose: Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope, Optik 85, 19–24 (1990)Google Scholar
  125. M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, K. Urban: A spherical-aberration-corrected 200 kV transmission electron microscope, Ultramicroscopy 75, 53–60 (1998)Google Scholar
  126. K. Urban, B. Kabius, M. Haider, H. Rose: A way to higher resolution: Spherical-aberration correction in a 200 kV transmission electron microscope, J. Electron Microsc. 48, 821–826 (1999)Google Scholar
  127. H. Rose: History of direct aberration correction, Adv. Imaging Electron Phys. 153, 3–39 (2008)Google Scholar
  128. M. Lentzen: The tuning of a Zernike phase plate with defocus and variable spherical aberration and its use in HRTEM imaging, Ultramicroscopy 99, 211–220 (2004)Google Scholar
  129. M. Haider, S. Uhlemann, J. Zach: Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM, Ultramicroscopy 81, 163–175 (2000)Google Scholar
  130. O. Saxton: A new way of measuring microscope aberrations, Ultramicroscopy 81, 41–45 (2000)Google Scholar
  131. O. Krivanek: A method for determining the coefficient of spherical aberration from a single electorn micrograph, Optik 45, 97–101 (1976)Google Scholar
  132. O. Krivanek, M. Leber: Autotuning for 1 Å resolution. In: Proc. 13th ICEM, Vol. 1, ed. by B. Jouffrey, C. Coliex (les Editions de Physique, Paris 1994) pp. 157–158Google Scholar
  133. F. Zemlin, K. Weiss, P. Schiske, W. Kunath, K. Herrmann: Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms, Ultramicroscopy 3, 49–60 (1978)Google Scholar
  134. G.Y. Fan, J.M. Cowley: Assessing the information content of HREM images, Ultramicroscopy 24(1), 49–60 (1988)Google Scholar
  135. A. Koster, A. van den Bos, K. van der Mast: An autofocus method for a TEM, Ultramicroscopy 21, 209–221 (1987)Google Scholar
  136. A. Koster, W. de Ruijter, A. van den Bos, K. van der Mast: Autotuning of a TEM using minimum electron dose, Ultramicroscopy 27, 251–272 (1989)Google Scholar
  137. A. Koster: Practical autotuning of a transmission electron microscope, Ultramicroscopy 31, 473–474 (1989)Google Scholar
  138. A. Koster, W. de Ruijter: Practical autoalignment of transmission electron microscopes, Ultramicroscopy 40, 89–107 (1992)Google Scholar
  139. O. Saxton: Accurate alignment of sets of images, J. Microsc. 174, 61–68 (1994)Google Scholar
  140. F. Thon: Zur Defokussierabhängigkeit des Phasenkontrastes bei der elektromikroskopische Abbildung, Z. Naturforsch. 21a, 476–478 (1966)Google Scholar
  141. F. Zemlin: A practical procedure for alignment of a high resolution electron microscope, Ultramicroscopy 4, 241–245 (1979)Google Scholar
  142. O. Saxton, D.J. Smith, S. Erasmus: Procedures for focusing, stigmating and alignment in high resolution electron microscopy, J. Microsc. 130, 187–201 (1983)Google Scholar
  143. G. Chand: Aberration Determination and Compensation in High Resolution Electron Microscopy, Ph.D. Thesis (Univ. of Cambridge, Cambridge 1997)Google Scholar
  144. N. Baba, E. Oho, K. Kanaya: An algorithm for on-line digital image processing for assisting automatic focusing and astigmatism correction in electron microscopy, Scanning Microsc. 1, 1507–1514 (1987)Google Scholar
  145. G. Fan, O. Krivanek: Controlled HREM alignment using automated diffractogram analysis. In: Electron Microscopy 1990, Vol. 1, ed. by L. Peachey, D. Williams (San Francisco, Seattle 1990) pp. 532–533Google Scholar
  146. S. Uhlemann, M. Haider: Residual wave aberrations in the first spherical aberration corrected transmission electron microscope, Ultramicroscopy 72, 109–119 (1998)Google Scholar
  147. R. Meyer: Quantitaive Automated Object Wave Restoration in High Resolution Electron Microscopy, Ph.D. Thesis (Technical University Dresden, Dresden 2002)Google Scholar
  148. R. Meyer, A. Kirkland, O. Saxton: A new method for the determination of the wave aberration function for high resolution TEM, Ultramicroscopy 92, 89–109 (2002)Google Scholar
  149. R. Meyer, A. Kirkland, O. Saxton: A new method for the determination of the wave aberration function for high-resolution TEM, Ultramicroscopy 99, 115–123 (2004)Google Scholar
  150. C. Kuglin, D. Hines: The phase correlation image alignment method. In: Proc. IEEE Int. Conf. Cybernet. Soc. (1975) pp. 163–165Google Scholar
  151. J. Barthel, A. Thust: Aberration measurement in HRTEM: Implementation and diagnostic use of numerical procedures for the highly precise recognition of diffractogram patterns, Ultramicroscopy 111, 27–46 (2010)Google Scholar
  152. J. Barthel, A. Thust: On the optical stability of high-resolution transmission electron microscopes, Ultramicroscopy 134, 6–17 (2013)Google Scholar
  153. M. Born, E. Wolf: Principles of Optics, 7th edn. (Cambridge Univ. Press, Cambridge 1999)Google Scholar
  154. P. Hawkes: Coherence in electron optics, Adv. Opt. Electron Microsc. 7, 101–184 (1978)Google Scholar
  155. K. Hanßen, L. Trepte: Die Kontrastübertragung im Elektronenmikroskop bei partiell kohärenter Beleuchtung, Optik 33, 166–181 (1971)Google Scholar
  156. J. Frank: The envelope of electron microscopic transfer functions for partially coherent illumination, Optik 38, 519–536 (1973)Google Scholar
  157. R. Wade, J. Frank: Electron microscope transfer functions for partially coherent axial illumination and chromatic defocus spread, Optik 49, 81–92 (1977)Google Scholar
  158. H. Hopkins: The concept of partial coherence in optics, Proc. R. Soc. A 208, 263–277 (1951)Google Scholar
  159. H. Hopkins: On the diffraction theory of optical images, Proc. R. Soc. A 217, 408–432 (1953)Google Scholar
  160. L.Y. Chang: Studies of Indirect Methods in High-Resolution Electron Microscopy, Ph.D. Thesis (Cambridge Univ., Cambridge 2004)Google Scholar
  161. L. Chang, R. Meyer, A. Kirkland: Calculations of HREM image intensity using Monte Carlo integration, Ultramicroscopy 104, 271–280 (2005)Google Scholar
  162. K. Ishizuka: Contrast transfer of crystal images in TEM, Ultramicroscopy 5, 55–65 (1980)Google Scholar
  163. P. Hawkes: Electron Optics and Electron Microscopy (Taylor Francis, London 1972)Google Scholar
  164. P. Hawkes (Ed.): Magnetic Electron Lenses (Springer, Berlin 1982)Google Scholar
  165. L. Reimer (Ed.): Energy Filtering Transmission Electron Microscopy (Springer, Berlin 1995)Google Scholar
  166. P. Hawkes, E. Kasper: Applied Geometrical Optics, Principles of Electron Optics, Vol. 2, 2nd edn. (Academic Press, London 2018)Google Scholar
  167. H. Ahmed, A. Broers: Lanthanum hexaboride electron emitter, J. Appl. Phys. 43, 2185–2192 (1972)Google Scholar
  168. M. Bronsgeest: Physics of Schottky Electron Sources. Theory and Optimum Operation (Pan Stanford, Singapore 2014)Google Scholar
  169. A.V. Crewe: High intensity electron sources and scanning electron microscopy. In: Electron Microscopy in Materials Science, ed. by U. Valdre (Academic Press, New York 1971) pp. 163–207Google Scholar
  170. D. Tuggle, L. Swanson: Emission characteristics of the ZrO/W thermal field electron source, J. Vac. Sci. Technol. B 3(1), 220–223 (1985)Google Scholar
  171. L.W. Swanson, G.A. Schwind: Review of ZrO/W Schottky cathode. In: Handbook of Charged Particle Optics, 2nd edn., ed. by J. Orloff (CRC, Boca Raton 2008) pp. 1–29Google Scholar
  172. H. von Harrach: Instrumental factors in high-resolution FEG STEM, Ultramicroscopy 58, 1–5 (1995)Google Scholar
  173. Y. Kohno, E. Okunishi, T. Tomita, I. Ishikawa, T. Kaneyama, Y. Ohkura, Y. Kondo, T. Isabel: Development of a cold field-emission gun for a 200 kV atomic resolution electron microscope, Microsc. Anal. Nanotechnol. 24, S9–S13 (2010)Google Scholar
  174. R.W. Carpenter, H. Xie, S. Lehner, T. Aoki, J. Mardinly, V. Mahmoud, N. Newman, F.A. Ponce: High energy and spatial resolution EELS band gap measurements using a Nion monochromated cold field emission HERMES dedicated STEM, Microsc. Microanal. 20, 70–71 (2014)Google Scholar
  175. F. Houdellier, G.M. Caruso, S. Weber, M. Kociak, A.A. Arbouet: Development of a high brightness ultrafast transmission electron microscope based on a laser-driven cold field emission source, Ultramicroscopy 186, 128–138 (2018)Google Scholar
  176. K. Bücker, M. Picher, O. Crégut, T. LaGrange, B.W. Reed, S.T. Park, D.J. Masiel, F. Banhart: Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode, Ultramicroscopy 171, 8–18 (2016)Google Scholar
  177. A. Feist, N. Bach, N. Rubiano da Silva, T. Danz, M. Möller, K.E. Priebe, T. Domröse, J.G. Gatzmann, S. Rost, J. Schauss, S. Strauch, R. Bormann, M. Sivis, S. Schäfer, C.C. Ropers: Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam, Ultramicroscopy 176, 63–73 (2017)Google Scholar
  178. H. Busch: Über die Wirkungsweise der Konzentrierungsspule bei der Braunschen Röhre, Arch. Elektrotech. 18, 583–594 (1926)Google Scholar
  179. J. Orloff (Ed.): Handbook of Charged Particle Optics (CRC, New York 1997)Google Scholar
  180. H. Rose: Geometrical Charged-Particle Optics, 2nd edn. (Springer, Berlin 2012)Google Scholar
  181. A. Septier (Ed.): Focusing of Charged Particles (Academic Press, New York 1967)Google Scholar
  182. T. Mulvey, M. Wallington: Electron lenses, Rep. Prog. Phys. 36, 347–421 (1973)Google Scholar
  183. P. Grivet (Ed.): Electron Optics (Pergamon, London 1965)Google Scholar
  184. K. Tsuno: Optical design of electron microscope lenses and energy filters, J. Electron Microsc. 48, 801–820 (1999)Google Scholar
  185. K. Tsuno: Magnetic lenses for electron microscopy. In: Handbook of Charged Particle Optics, 2nd edn., ed. by J. Orloff (CRC, Boca Raton 2008) pp. 129–160Google Scholar
  186. P. Sturrock (Ed.): Static and Dynamic Electron Optics (Cambridge Univ. Press, Cambridge 1955)Google Scholar
  187. E. Munro: Computer-aided design of electron lenses by the finite element method. In: Image Processing and Computer Aided Design in Electron Optics, ed. by P. Hawkes (Academic Press, London 1973) p. 284Google Scholar
  188. B. Lencová: Electrostatic lenses. In: Handbook of Charged Particle Optics, 2nd edn., ed. by J. Orloff (CRC, Boca Raton 2008) pp. 161–208Google Scholar
  189. G. Liebmann: An improved method of numerical ray tracing through electron lenses, Proc. Phys. Soc. B 62, 753–772 (1949)Google Scholar
  190. W. Glaser: Elektronen- und Ionenoptik. In: Optics of Corpuscles/Korpuskularoptik, Handbuch der Physik, Vol. 6/33, ed. by S. Flügge (Springer, Berlin 1956) pp. 123–395Google Scholar
  191. W. Glaser: Grundlagen der Elektronenoptik (Springer, Berlin 1952)Google Scholar
  192. J. Cleaver: Some optical characteristics of the saturated symmetrical condenser-objective lens, Optik 49, 413–431 (1979)Google Scholar
  193. K. Tsuno, Y. Harada: Design procedure for a high resolution electron microscope objective lens, J. Electron Microsc. 32, 289–298 (1983)Google Scholar
  194. J. Cleaver: The choice of polepiece shape and lens operating mode for magnetic objective lenses with saturated polepieces, Optik 57, 9–34 (1979)Google Scholar
  195. U. Valdrè: Electron microscope stage design and applications, J. Microsc. 117, 55–77 (1979)Google Scholar
  196. U. Valdrè, M. Goringe: Special electron microscope specimen stages. In: Electron Microscopy in Materials Science, ed. by U. Valdre (Academic Press, New York 1971) p. 208Google Scholar
  197. I. Watt: The analytical electron microscope, J. Phys. E 19, 668–678 (1986)Google Scholar
  198. J. Turner, U. Valdre, A. Fukami: Control of specimen orientation and environment, J. Electron Microsc. Tech. 11, 258–271 (2005)Google Scholar
  199. P. Emile, S. Asselbergs, J. Brock, M. de Jong, M. Otten: The new CM series: Integration of a five-axis motorized, fully computer-controlled goniometer. In: Institute of Physics Conference Series, EMAG 95, Vol. 138, ed. by A. Craven (IOP, London 1993) pp. 503–506Google Scholar
  200. Y. Kondo, R. Hosokawa, M. Okhura, M. Hamochi, A. Nakagawa, A. Kirkland, T. Honda: Development of a specimen drift compensation system using a PC and piezo electric devices, Electron Microsc. 1, 275–276 (1994)Google Scholar
  201. Z. Wang: New developments in transmission electron microscopy for nanotechnology, Adv. Mater. 15, 1497–1514 (2003)Google Scholar
  202. M.L. Taheri, E.A. Stach, I. Arslan, P.A. Crozier, B.C. Kabius, T. LaGrange, A.M. Minor, S. Takeda, M. Tanase, J.B. Wagner, R. Sharma: Current status and future directions for in situ transmission electron microscopy, Ultramicroscopy 170, 86–95 (2016)Google Scholar
  203. Y. Kondo, H. Kobayashi, T. Kasai, H. Nunome, A. Kirkland, T. Honda: Development of a bakeable eucentric goniometer and specimen pre-treatment chamber for an ultra high vacuum electron microscope, Electron Microsc. 1, 269–270 (1994)Google Scholar
  204. A. Mittelberger, C. Kramberger, C. Hofer, C. Mangler, J. Meyer: Automated image acquisition for low-dose STEM at atomic resolution, Microsc. Microanal. 23, 809–817 (2017)Google Scholar
  205. M. Stobbs, O. Saxton: Quantitative high resolution transmission electron microscopy: The need for energy filtering and the advantages of energy-loss imaging, J. Microsc. 151, 171–184 (1987)Google Scholar
  206. O. Krivanek, C. Ahn, G. Wood: The inelastic contribution to high resolution images of defects, Ultramicroscopy 33, 177–185 (1990)Google Scholar
  207. C. Boothroyd: Why don't high-resolution simulations and images match?, J. Microsc. 190, 99–108 (1998)Google Scholar
  208. C. Boothroyd: Quantification of high-resolution electron microscope images of amorphous carbon, Ultramicroscopy 83, 159–168 (2000)Google Scholar
  209. R. Egerton (Ed.): Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd edn. (Plenum, New York 1996)Google Scholar
  210. S. Uhlemann, H. Rose: Acceptance of imaging energy filters, Ultramicroscopy 63, 161–167 (1996)Google Scholar
  211. K. Tsuno: Electron optical analysis of a retarding Wien filter for electron spectroscopic imaging, Rev. Sci. Instrum. 64, 659–666 (1993)Google Scholar
  212. R. Henkelman, F. Ottensmeyer: An energy filter for biological electron microscopy, J. Microsc. 102, 79–95 (1979)Google Scholar
  213. H. Rose, E. Plies: Entwurf eines fehlerarmen magnetischen Energie-Analysators, Optik 40, 336–341 (1974)Google Scholar
  214. K. Tsuno, T. Kaneyama, T. Honda, K. Tsuda, M. Terauchi, M. Tanaka: Design and testing of Omega mode imaging energy filters at 200 kV, J. Electron Microsc. 46, 357–368 (1997)Google Scholar
  215. O. Krivanek, A. Gubbens, N. Dellby, C. Meyer: Design and first applications of a post-column imaging filter, Microsc. Microanal. Microstruct. 3, 187–199 (1992)Google Scholar
  216. S. Lanio: High-resolution imaging magnetic energy filters with simple structure, Optik 73, 99–107 (1986)Google Scholar
  217. H. Rose, W. Pejas: Optimization of imaging magnetic energy filters free of second order aberrations, Optik 54, 235–250 (1979)Google Scholar
  218. S. Lanio, H. Rose, D. Krahl: Test and improved design of a corrected imaging magnetic energy filter, Optik 73, 56–68 (1986)Google Scholar
  219. S. Uhlemann, H. Rose: The mandoline filter—A new high-performance imaging filter for sub-eV EFTEM, Optik 96, 163–178 (1994)Google Scholar
  220. D. van Dyck, H. Lichte, J. Spence: Inelastic scattering and holography, Ultramicroscopy 81, 187–194 (2000)Google Scholar
  221. I. Kuo, R. Glaeser: Development of methodology for low exposure, high resolution electron microscopy of biological specimens, Ultramicroscopy 1, 53–66 (1975)Google Scholar
  222. E. Zeitler: The photographic emulsion as analog recorder for electrons, Ultramicroscopy 46, 405–416 (1992)Google Scholar
  223. J. Spence, J. Zuo: Large dynamic range, parallel detection system for electron diffraction and imaging, Rev. Sci. Instrum. 59, 2102–2105 (1988)Google Scholar
  224. J. Zuo: Electron detection characteristics of a slow-scan CCD camera, imaging plates and film, and electron image restoration, Microsc. Res. Tech. 49, 245–268 (2000)Google Scholar
  225. G. Fan, M. Ellisman: Digital imaging in transmission electron microscopy, J. Microsc. 200, 1–13 (2000)Google Scholar
  226. W. de Ruijter: Imaging properties and applications of slow-scan charge-coupled device cameras suitable for electron microscopy, Micron 26, 247–275 (1995)Google Scholar
  227. G. McMullan, A.R. Faruqi, D. Clare, R. Henderson: Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy, Ultramicroscopy 147, 156–163 (2014)Google Scholar
  228. A. Faruqi, D. Cattermole: Pixel detectors for high-resolution cryo-electron microscopy, Nucl. Instrum. Methods Phys. Res. A 549(1-3), 192–198 (2005)Google Scholar
  229. A. Faruqi, R. Henderson, M. Pryddetch, P. Allport, A. Evans: Direct single electron detection with a CMOS detector for electron microscopy, Nucl. Instrum. Methods Phys. Res. A 546, 170–175 (2005)Google Scholar
  230. A. Faruqi, R. Henderson, L. Tlustos: Noiseless direct detection of electrons in Medipix2 for electron microscopy, Nucl. Instrum. Methods Phys. Res. A 546, 160–163 (2005)Google Scholar
  231. G. Fan, P. Datte, E. Beuville, J. Beche, J. Millaud, K. Downing, F. Burkard, M. Ellisman, N. Xuong: ASIC-based event-driven 2-D digital electron counter for TEM imaging, Ultramicroscopy 70, 107–113 (1998)Google Scholar
  232. A. Milazzo, P. Leblanc, F. Duttweiler, L. Jin, J. Bouwer, S. Peltier, M. Ellisman, F. Bieser, H. Matis, H. Wieman, P. Denes, S. Kleinfelder, N. Xuong: Active pixel sensor array as a detector for electron microscopy, Ultramicroscopy 104, 152–159 (2005)Google Scholar
  233. R. Clough, A.I. Kirkland: Direct digital electron detectors, Adv. Imaging Electron Phys. 198, 1–42 (2016)Google Scholar
  234. P. Roberts, J. Chapman, A. Macleod: A CCD-based image recording system for the CTEM, Ultramicroscopy 8, 385–396 (1982)Google Scholar
  235. M. Ravel, A.L. Reinheimer: Backside-thinned CCDs for keV electron detection, Proc. SPIE 1447, 109–122 (1991)Google Scholar
  236. J. Fiebiger, R. Müller: Pair-production energies in silicon and germanium bombarded with low-energy electrons, J. Appl. Phys. 43, 3202–3207 (1972)Google Scholar
  237. R. Meyer, A. Kirkland: The effects of electron and photon scattering on signal and noise transfer properties of scintillators in CCD cameras used for electron detection, Ultramicroscopy 75, 23–33 (1998)Google Scholar
  238. R. Meyer, A. Kirkland: Characterisation of the signal and noise transfer of CCD cameras for electron detection, Microsc. Res. Tech. 49, 269–280 (2000)Google Scholar
  239. R. Meyer, A. Kirkland, R. Dunin-Borkowski, J. Hutchison: Experimental characterisation of CCD cameras for HREM at 300 kV, Ultramicroscopy 85, 9–13 (2000)Google Scholar
  240. J. Zuo, M. McCartney, J. Spence: Performance of imaging plates for electron recording, Ultramicroscopy 66, 35–47 (1996)Google Scholar
  241. A. Faruqi, D. Cattermole, R. Henderson, B. Mikulec, C. Raeburn: Evaluation of a hybrid pixel detector for electron microscopy, Ultramicroscopy 94, 263–276 (1994)Google Scholar
  242. R. Ballabriga, M. Campbell, X. Llopart: Asic developments for radiation imaging applications: The medipix and timepix family, Nucl. Instrum. Methods Phys. Res. A 878, 10–23 (2018)Google Scholar
  243. J.A. Mir, R. Clough, R. MacInnes, C. Gough, R. Plackett, I. Shipsey, H. Sawada, I. MacClaren, R. Ballabriga, D. Maneuski, V. O'Shea, D. McGrouther, A.I. Kirkland: Characterisation of the Medipix3 detector for 60 and 80 keV electron, Ultramicroscopy 182, 44–53 (2017)Google Scholar
  244. G. McMullan, R. Henderson, S. Chen, A.R. Faruqi: Detective quantum efficiency of electron area detectors in electron microscopy, Ultramicroscopy 109, 1126–1143 (2009)Google Scholar
  245. G. McMullan, R. Turchetta, A.R. Faruqi: Single event imaging for electron microscopy using MAPS detectors, J. Instrum. 6, C04001 (2011)Google Scholar
  246. G. McMullan, A.R. Faruqi, R. Henderson, N. Guerrini, R. Turchetta, A. Jacobs, G. van Hoften: Experimental observation of the improvement in MTF from backthinning a CMOS direct electron detector, Ultramicroscopy 109, 1144–1147 (2009)Google Scholar
  247. H. Yang, L. Jones, H. Ryll, M. Simson, H. Soltau, Y. Kondo, R. Sagawa, H. Banba, I. Maclaren, P.D. Nellist: 4-D STEM: High efficiency phase contrast imaging using a fast pixelated detector, J. Phys. Conf. Ser. 644, 012032 (2015)Google Scholar
  248. H. Yang, R.N. Rutte, L. Jones, M. Simson, R. Sagawa, H. Ryll, M. Huth, T.J. Pennycook, M.L.H. Green, H. Soltau, Y. Kondo, B.G. Davis, P.D. Nellist: Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures, Nat. Commun. 7, 12532 (2016)Google Scholar
  249. K. Hermann, D. Krahl: The detection quantum efficiency of electronic image recording systems, J. Microsc. 127, 17–29 (1982)Google Scholar
  250. O. Scherzer: Sphärische und chromatische Korrektur von Elektronenlinsen, Optik 2, 114–132 (1947)Google Scholar
  251. M. Haider, H. Rose, S. Uhlemann, B. Kabius, K. Urban: Electron microscopy image enhanced, Nature 392, 768–769 (1998)Google Scholar
  252. M. Haider, H. Rose, S. Uhlemann, B. Kabius, K. Urban: Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope, J. Electron Microsc. 47, 395–405 (1998)Google Scholar
  253. M. Haider, G. Braunshausen, E. Schwan: Correction of the spherical aberration of a 200 kV TEM by means of a hexapole corrector, Optik 99, 167–179 (1995)Google Scholar
  254. V. Beck: A hexapole spherical aberration corrector, Optik 53, 241–255 (1979)Google Scholar
  255. J. Hutchison, J. Titchmarsh, D. Cockayne, R. Doole, C. Hetherington, A. Kirkland, H. Sawada: A versatile double aberration-corrected, energy filtered HREM/STEM for materials science, Ultramicroscopy 103, 7–15 (2005)Google Scholar
  256. H. Rose: Prospects for aberration-free electron microscopy, Ultramicroscopy 103, 1–6 (2005)Google Scholar
  257. L.Y. Chang, F.R. Chen, J.J. Kai, A.I. Kirkland: Calculations of spherical aberration-corrected imaging behaviour, J. Electron Microsc. 52, 359–364 (2003)Google Scholar
  258. L.Y. Chang, A.I. Kirkland, J. Titchmarsh: On the importance of fifth-order spherical aberration for a fully corrected electron microscope, Ultramicroscopy 106, 301–306 (2006)Google Scholar
  259. M. Lentzen, B. Jahnen, C. Jia, A. Thust, K. Tillmann, K. Urban: High-resolution imaging with an aberration-corrected transmission electron microscope, Ultramicroscopy 92, 233–242 (2002)Google Scholar
  260. R. Morin, H. Fink: Highly monochromatic electron point-source beams, Appl. Phys. Lett. 65, 2362–2364 (1994)Google Scholar
  261. S. Purcell, V. Binh, N. Garcia: 64 meV measured energy dispersion from cold field emission nanotips, Appl. Phys. Lett. 67, 436–438 (1995)Google Scholar
  262. E. Borgonjen, G. van Bakel, C. Hagen, P. Kruit: A novel vacuum electron source based on ballistic electron emission, Appl. Surf. Sci. 111, 165–169 (1997)Google Scholar
  263. A.W. Baum, W.E. Spicer, R.F.W. Pease, K.A. Costello, V.W. Aebi: Negative electron affinity photocathodes as high-performance electron sources. Part 1: Achievement of ultrahigh brightness from an NEA photocathode, Proc. SPIE 2522, 208–219 (1995)Google Scholar
  264. A.W. Baum, W.E. Spicer, R.F.W. Pease, K.A. Costello, V.W. Aebi: Negative electron affinity photocathodes as high-performance electron sources. Part 2: Energy spectrum measurements, Proc. SPIE 2550, 189–196 (1995)Google Scholar
  265. S. Purcell, V. Bihn: Characterization of atomic-size metal ion sources, J. Vac. Sci. Technol. B 19, 79–86 (2001)Google Scholar
  266. H. Mook, P. Kruit: On the monochromatisation of high brightness electron sources for electron microscopy, Ultramicroscopy 78, 43–51 (1999)Google Scholar
  267. H. Rose: Prospects for realizing a sub-\(\AA{}\) sub-eV resolution EFTEM, Ultramicroscopy 78, 13–25 (1999)Google Scholar
  268. P. Batson: High-energy resolution electron spectrometer for 1-nm spatial analysis, Rev. Sci. Instrum. 57, 43–48 (1986)Google Scholar
  269. M. Mukai, K. Omoto, A. Ikeda, T. Kaneyama, N.P. Young, P.D. Nellist, A.I. Kirkland: The development of a 200 kV monochromated field emission electron source, Ultramicroscopy 140, 37–43 (2014)Google Scholar
  270. K. Kimoto: Practical aspects of monochromators developed for transmission electron microscopy, Microscopy 63, 337–344 (2014)Google Scholar
  271. H. Rose: The retarding Wien filter as a high-performance imaging filter, Optik 77, 26–34 (1987)Google Scholar
  272. D. Gabor: A new microscopic principle, Nature 161, 777–778 (1948)Google Scholar
  273. M. Lehmann, H. Lichte, D. Geiger, G. Lang, E. Schweda: Electron holography at atomic dimensions—Present state, Mater. Charact. 42, 249–263 (1999)Google Scholar
  274. A. Tonamura: Applications of electron holography, Rev. Mod. Phys. 59, 639–669 (1987)Google Scholar
  275. A. Tonamura (Ed.): Electron Holography, 2nd edn. (Springer, Heidelberg 1999)Google Scholar
  276. M. O'Keefe, C. Hetherington, Y. Wang, E. Nelson, J. Turner, C. Kisielowski, O. Malm, R. Mueller, J. Ringnalda, M. Pan, A. Thust: Sub-\(\AA{}\)ngstrom high-resolution transmission electron microscopy at 300 keV, Ultramicroscopy 89, 215–241 (2001)Google Scholar
  277. O. Saxton: Image and signal processing in electron microscopy. In: Proc. 6th Pfefferkorn Conf., ed. by P. Hawkes, F. Ottensmeyer, O. Saxton, A. Rosenfeld (Scanning Microscopy International, Chicago 1988) p. 213Google Scholar
  278. P. Schiske: Image processing using additional statistical information about the object. In: Image Processing and Computer Aided Design in Electron Optics, ed. by P. Hawkes (Academic Press, London 1973) p. 82Google Scholar
  279. M. Op de Beeck, D. van Dyck, W. Coene: Wave function reconstruction in HRTEM: The parabola method, Ultramicroscopy 64, 167–183 (1996)Google Scholar
  280. A. Thust, W. Coene, M. Op de Beeck, D. van Dyck: Focal-series reconstruction in HRTEM: Simulation studies on non-periodic objects, Ultramicroscopy 64, 211–230 (1996)Google Scholar
  281. A. Thust, M. Overwijk, W. Coene, M. Lentzen: Numerical correction of lens aberrations in phase-retrieval HRTEM, Ultramicroscopy 64, 249–264 (1996)Google Scholar
  282. E. Kirkland, B. Siegel, N. Uyeda, Y. Fujiyoshi: Improved high resolution image processing of bright field electron micrographs, Ultramicroscopy 17, 87–103 (1985)Google Scholar
  283. E. Kirkland: Improved high resolution image processing of bright field electron micrographs, Ultramicroscopy 15, 151–172 (1984)Google Scholar
  284. E. Kirkland: High resolution image processing of electron micrographs. In: Proc. 6th Pfefferkorn Conf., ed. by P. Hawkes, F. Ottensmeyer, O. Saxton, A. Rosenfeld (Scanning Microscopy International, Chicago 1988)Google Scholar
  285. W. Coene, G. Janssen, M. Op de Beeck, D. Van Dyck: Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy, Phys. Rev. Lett. 69, 3743–3746 (1992)Google Scholar
  286. W. Coene, A. Thust, M. Op de Beeck, D. Van Dyck: Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy, Ultramicroscopy 64, 109–135 (1996)Google Scholar
  287. K. Tillmann, L. Houben, A. Thust, K. Urban: Spherical-aberration correction in tandem with the restoration of the exit-plane wavefunction: Synergetic tools for the imaging of lattice imperfections in crystalline solids at atomic resolution, J. Mater. Sci. 41, 4420–4433 (2006)Google Scholar
  288. C. Ophus, T.T. Ewalds: Guidelines for quantitative reconstruction of complex exit waves in HRTEM, Ultramicroscopy 113, 88–95 (2011)Google Scholar
  289. V. Keast, M.J. Gladys, T.C. Petersen, C. Dwyer, C.T. Koch, T. Haber, G. Kothleitner: Energy-filtered phase retrieval using the transport of intensity equation, Appl. Phys. Lett. 99, 221905 (2011)Google Scholar
  290. C. Ozsoy Keskinbora, C. Boothroyd, R. Dunin-Borkowski, P.A. van Aken, C.T. Koch: Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity, Sci. Rep. 4(2014), 7020 (2014)Google Scholar
  291. A. Kirkland, O. Saxton, K.-L. Chau, K. Tsuno, M. Kawasaki: Super-resolution by aperture synthesis: Tilt series reconstruction in CTEM, Ultramicroscopy 57, 355–374 (1995)Google Scholar
  292. A. Kirkland, O. Saxton, G. Chand: Multiple beam tilt microscopy for super resolved imaging, J. Electron Microsc. 1, 11–22 (1997)Google Scholar
  293. S.J. Haigh, A.I. Kirkland: High resolution exit wave restoration. In: Modeling Nanoscale Imaging in Electron Microscopy, ed. by T. Vogt, W. Dahmen, P. Binev (Springer, Boston 2012) pp. 41–72Google Scholar
  294. S. Haigh, H. Sawada, A.I. Kirkland: Optimal tilt magnitude determination for aberration-corrected super resolution exit wave function reconstruction, Philos. Trans. R. Soc. A A367, 3755–3771 (2009)Google Scholar
  295. S. Haigh, H. Sawada, A.I. Kirkland: Atomic structure imaging beyond conventional resolution limits in the transmission electron microscope, Phys. Rev. Lett. 103, 126101 (2009)Google Scholar
  296. R. Meyer, J. Sloan, R. Dunin-Borkowski, A. Kirkland, M. Novotny, S. Bailey, J. Hutchison, M. Green: Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes, Science 289, 1324–1326 (2000)Google Scholar
  297. M. Lehmann, H. Lichte: Electron holography with a Cs-corrected transmission electron microscope, Microsc. Microanal. 8(66), 447–444 (2002)Google Scholar
  298. A. Thust: High-resolution transmission electron microscopy on an absolute contrast scale, Phys. Rev. Lett. 102, 220801 (2009)Google Scholar
  299. C. Huang, B. Berkels, A.I. Kirkland: Ultramicroscopy, in press (2019)Google Scholar
  300. P. Hawkes: Units and conventions in electron microscopy, for use in ultramicroscopy, Ultramicroscopy 5, 67–70 (1980)Google Scholar
  301. K.L. Langley, A.I. Kirkland, R.R. Meyer, J. Sloan, J.L. Hutchison, M.J. Sayagues: Application of super-resolution by focal series reconstruction to Nd5Ti5O17, Inst. Phys. Conf. Ser. 168, 15 (2001)Google Scholar
  302. M.J. Sayagues, J. Sloan, K. Langley, A.I. Kirkland, R.R. Meyer, J.L. Hutchison, R.J.D. Tilley: Structural characterization of the $$n=5$$ layered perovskite neodymium titanate using high-resolution transmission electron microscopy and image reconstruction, Acta Crystallogr. B 59, 449–455 (2003)Google Scholar
  303. J.M. Cowley, A.F. Moodie: The scattering of electrons by atoms and crystals. I. A new theoretical approach, Acta Crystallogr. 10, 609–619 (1957)Google Scholar
  304. H. Bethe: Theorie der Beugung von Elektronen an Kristallen, Ann. Phys. 392(87), 55–129 (1928)Google Scholar
  305. G. Mobus, R. Schweinfest, T. Gemming, T. Wagner, M. Riihle: Iterative structure retrieval techniques in HREM: A comparative study and a modular program package, J. Microsc. 190, 109–130 (1998)Google Scholar
  306. D. Tang, A. Kirkland, D. Jefferson: Optimisation of high-resolution image simulations, Ultramicroscopy 48, 321–331 (1993)Google Scholar
  307. D. Tang, A. Kirkland, D. Jefferson: Optimisation of high-resolution image simulations II. Image selection in reciprocal space, Ultramicroscopy 53, 137–146 (1994)Google Scholar
  308. O. Saxton: Quantitative comparison of images and transforms, J. Microsc. 190, 52–60 (1997)Google Scholar
  309. I. Lobato, D. van Dyck: A complete comparison of simulated electron diffraction patterns using different parameterizations of the electron scattering factors, Ultramicroscopy 155, 11–19 (2015)Google Scholar
  310. K. Fujiwara: Superfine particle magnetite, J. Phys. Soc. Jpn. 17(Suppl. B2), 118–123 (1962)Google Scholar
  311. A. Moodie, J. Cowley, P. Goodman: Dynamical theory of electron diffraction. In: International Tables of Crystallography, Vol. B: Reciprocal Space, 2nd edn., ed. by U. Shmueli (Kluwer Academic, Dordrecht 2001) pp. 647–653Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dept. of MaterialsUniversity of OxfordOxfordUK
  2. 2.Eyring Materials CenterArizona State UniversityTempe, AZUSA

Personalised recommendations