Advertisement

Unveiling Scholarly Communities over Knowledge Graphs

  • Sahar Vahdati
  • Guillermo PalmaEmail author
  • Rahul Jyoti Nath
  • Christoph Lange
  • Sören Auer
  • Maria-Esther Vidal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11057)

Abstract

Knowledge graphs represent the meaning of properties of real-world entities and relationships among them in a natural way. Exploiting semantics encoded in knowledge graphs enables the implementation of knowledge-driven tasks such as semantic retrieval, query processing, and question answering, as well as solutions to knowledge discovery tasks including pattern discovery and link prediction. In this paper, we tackle the problem of knowledge discovery in scholarly knowledge graphs, i.e., graphs that integrate scholarly data, and present Korona, a knowledge-driven framework able to unveil scholarly communities for the prediction of scholarly networks. Korona implements a graph partition approach and relies on semantic similarity measures to determine relatedness between scholarly entities. As a proof of concept, we built a scholarly knowledge graph with data from researchers, conferences, and papers of the Semantic Web area, and apply Korona to uncover co-authorship networks. Results observed from our empirical evaluation suggest that exploiting semantics in scholarly knowledge graphs enables the identification of previously unknown relations between researchers. By extending the ontology, these observations can be generalized to other scholarly entities, e.g., articles or institutions, for the prediction of other scholarly patterns, e.g., co-citations or academic collaboration.

Notes

Acknowledgement

This work has been partially funded by the EU H2020 programme for the project iASiS (grant agreement No. 727658).

References

  1. 1.
    Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning. In: Kliemann, L., Sanders, P. (eds.) Algorithm Engineering. LNCS, vol. 9220, pp. 117–158. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49487-6_4CrossRefGoogle Scholar
  2. 2.
    Gaertler, M.: Clustering. In: Brandes, U., Erlebach, T. (eds.) Network Analysis: Methodological Foundations. LNCS, vol. 3418, pp. 178–215. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-31955-9_8CrossRefGoogle Scholar
  3. 3.
    Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. Sci. Comput. 20, 359–392 (1998)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Kastrin, A., Rindflesch, T.C., Hristovski, D.: Link prediction on the semantic MEDLINE network. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS (LNAI), vol. 8777, pp. 135–143. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11812-3_12CrossRefGoogle Scholar
  5. 5.
    Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. CoRR abs/1405.4053 (2014)Google Scholar
  6. 6.
    Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. JASIST 58(7), 1019–1031 (2007)CrossRefGoogle Scholar
  7. 7.
    Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)CrossRefGoogle Scholar
  8. 8.
    Palma, G., Vidal, M.-E., Raschid, L.: Drug-target interaction prediction using semantic similarity and edge partitioning. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 131–146. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11964-9_9CrossRefGoogle Scholar
  9. 9.
    Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semant. Web J. 8(3), 489–508 (2017)CrossRefGoogle Scholar
  10. 10.
    Ribón, I.T., Vidal, M., Kämpgen, B., Sure-Vetter, Y.: GADES: a graph-based semantic similarity measure. In: SEMANTICS (2016)Google Scholar
  11. 11.
    Sachan, M., Ichise, R.: Using semantic information to improve link prediction results in network datasets. IJET 2(4), 334–339 (2010)CrossRefGoogle Scholar
  12. 12.
    Traverso-Ribón, I., Palma, G., Flores, A., Vidal, M.-E.: Considering semantics on the discovery of relations in knowledge graphs. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 666–680. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49004-5_43CrossRefGoogle Scholar
  13. 13.
    Wang, P., Xu, B., Wu, Y., Zhou, X.: Link prediction in social networks: the state-of-the-art. Sci. China Inf. Sci. 58(1), 1–38 (2015)Google Scholar
  14. 14.
    Xia, F., Wang, W., Bekele, T.M., Liu, H.: Big scholarly data: a survey. In: IEEE Big Data (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of BonnBonnGermany
  2. 2.L3S Research CenterHannoverGermany
  3. 3.TIB Leibniz Information Centre for Science and TechnologyHannoverGermany
  4. 4.Fraunhofer IAISSankt AugustinGermany

Personalised recommendations