Advertisement

Anonymized Distributed PHR Using Blockchain for Openness and Non-repudiation Guarantee

  • David Mendes
  • Irene Rodrigues
  • César Fonseca
  • Manuel Lopes
  • José Manuel García-Alonso
  • Javier Berrocal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11057)

Abstract

We introduce our solution developed for data privacy, and specifically for cognitive security that can be enforced and guaranteed using blockchain technology in SAAL (Smart Ambient Assisted Living) environments. Using our proposal the access to a patient’s clinical process resists tampering and ransomware attacks that have recently plagued the HIS (Hospital Information Systems) in various countries. One important side effect of this data infrastructure is that it can be accessed in open form, for research purposes for instance, since no individual re-identification or group profiling is possible by any means.

Keywords

Blockchain Data privacy Interoperability Open access 

References

  1. 1.
    Ahmed, A., Ahmed, E.: A survey on mobile edge computing. In: 10th International Conference on Intelligent Systems and Control (ISCO), pp. 1–8, January 2016Google Scholar
  2. 2.
    Asano, S., Yashiro, T., Sakamura, K.: Device collaboration framework in IoT-aggregator for realizing smart environment. In: TRON Symposium, December 2016Google Scholar
  3. 3.
    Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery. ACM Trans. Comput. Syst. 20(4), 398–461 (2002)CrossRefGoogle Scholar
  4. 4.
    Greenstadt, R., Beal, J.: Cognitive security for personal devices. In: Proceedings of the 1st ACM Workshop on Workshop on AISec, AISec 2008, pp. 27–30. ACM, New York (2008)Google Scholar
  5. 5.
    Holler, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Boyle, D.: From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence. Elsevier Science (2014)Google Scholar
  6. 6.
    Ichikawa, D., Kashiyama, M., Ueno, T.: Tamper-resistant mobile health using blockchain technology. JMIR Mhealth Uhealth 5(7), e111 (2017)CrossRefGoogle Scholar
  7. 7.
    Iroha. Hyperledger Iroha. Accessed 29 Aug 2017Google Scholar
  8. 8.
    Jacobovitz, O.: Blockchain for identity management. Technical report, The Lynne and William Frankel Center for Computer Science Department of Computer Science, Ben-Gurion University, Beer Sheva, Israel, December 2016. Technical Report #16-02Google Scholar
  9. 9.
    Jain, S., Kajal, A.: Effective analysis of risks and vulnerabilities in internet of things. Int. J. Comput. Corp. Res. 5(2) (2015)Google Scholar
  10. 10.
    Liang, X., Shetty, S., Tosh, D., Kamhoua, C., Kwiat, K., Njilla, L.: Provchain: a blockchain-based data provenance architecture in cloud environment with enhanced privacy and availability. In: 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 468–477, May 2017Google Scholar
  11. 11.
    NASDAQ. Byzantine Fault Tolerance. Accessed 13 Apr 2018Google Scholar
  12. 12.
    Pramanik, M.I., Lau, R.Y., Demirkan, H., Azad, M.A.K.: Smart health: big data enabled health paradigm within smart cities. Expert Syst. Appl. 87, 370–383 (2017)CrossRefGoogle Scholar
  13. 13.
    RegEU. Regulation EU No 910/2014 of the European parliament and of the council of 23 July 2014 on electronic identification and trust services for electronic transactions in the internal market and repealing directive 1999/93/EC (eIDAS regulation) (2014). European union: 4459Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • David Mendes
    • 1
  • Irene Rodrigues
    • 1
  • César Fonseca
    • 2
  • Manuel Lopes
    • 3
  • José Manuel García-Alonso
    • 4
  • Javier Berrocal
    • 4
  1. 1.LISPECT, Universidade de ÉvoraÉvoraPortugal
  2. 2.Departamento de EnfermagemUniversidade de ÉvoraÉvoraPortugal
  3. 3.Rede Nacional de Cuidados ContinuadosMinistério da SaúdeLisbonPortugal
  4. 4.Universidad de ExtremaduraCáceresSpain

Personalised recommendations