Advertisement

False-Positive Reduction in Ontology Matching Based on Concepts’ Domain Similarity

  • Audun VenneslandEmail author
  • Trond Aalberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11057)

Abstract

In this study we explore if considering the domain similarity between concepts to be matched can contribute filter out false positive relations. This is particularly relevant in areas where the “universe of discourse” encompasses several diverse domains, such as cultural heritage. Our approach is based on an algorithm that employs the lexical resource WordNet Domains to filter out relations where the two concepts to be matched are associated with different domains. We evaluate our approach in an experiment involving Bibframe and Schema.org, two ontologies of complementary nature. The results from the evaluation show that the use of such a domain filter indeed can have a positive effect on reducing false positives while retaining true ones.

References

  1. 1.
    Doerr, M.: Ontologies for cultural heritage. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 463–486. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-92673-3_21CrossRefGoogle Scholar
  2. 2.
    Cheatham, M., Hitzler, P.: String similarity metrics for ontology alignment. In: Alani, H. (ed.) ISWC 2013. LNCS, vol. 8219, pp. 294–309. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41338-4_19CrossRefGoogle Scholar
  3. 3.
    Po, L., Bergamaschi, S.: Automatic lexical annotation applied to the SCARLET ontology matcher. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010. LNCS (LNAI), vol. 5991, pp. 144–153. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12101-2_16CrossRefGoogle Scholar
  4. 4.
    Gella, S., Strapparava, C., Nastase, V.: Mapping wordnet domains, wordnet topics and Wikipedia categories to generate multilingual domain specific resources. In: LREC, pp. 1117–1121 (2014)Google Scholar
  5. 5.
    Stoilos, G., Stamou, G., Kollias, S.: A string metric for ontology alignment. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 624–637. Springer, Heidelberg (2005).  https://doi.org/10.1007/11574620_45CrossRefGoogle Scholar
  6. 6.
    Faria, D., Pesquita, C., Santos, E., Palmonari, M., Cruz, I.F., Couto, F.M.: The AgreementMakerLight ontology matching system. In: Meersman, R., et al. (eds.) OTM 2013. LNCS, vol. 8185, pp. 527–541. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41030-7_38CrossRefGoogle Scholar
  7. 7.
    Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., Trojahn, C.: Ontology alignment evaluation initiative: six years of experience. In: Spaccapietra, S. (ed.) Journal on Data Semantics XV. LNCS, vol. 6720, pp. 158–192. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22630-4_6CrossRefGoogle Scholar
  8. 8.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38721-0CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations