A Panoramic View of the Immune Response to Trypanosoma cruzi Infection

  • Gonzalo R. Acevedo
  • Magali C. Girard
  • Karina A. GómezEmail author
Part of the Birkhäuser Advances in Infectious Diseases book series (BAID)


Chagas disease is a complex disorder in which the immunological response developed by the host plays a fundamental role, not only in the clearance of the parasite but also in the inflammatory status observed in specific affected tissues. Chagas disease has two phases, acute and chronic, the latter being established in those cases where treatment with currently available anti-parasitic drugs (nifurtimox and benznidazole) is either not applied or not effective. During the chronic phase, the disease may remain without any detectable symptoms for several decades or progress toward cardiac, digestive, neurological forms, or even a combination of these alterations. The immune response developed in all of these conditions is flowery and comprises humoral and cellular components; however the clearance of the parasite is incomplete due to the multiple mechanisms that T. cruzi deploys in order to perpetuate itself within the host.

Here, we make an extensive review of T. cruzi-host immune response interactions with special attention on human models, also referring to the particular clinical scenario of etiological treatment in Chagas disease.


Trypanosoma cruzi Chagas disease Innate and adaptive immune response Cardiac Chagas disease Human immune response after treatment 


  1. 1.
    Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. 7th ed. Amsterdam: Elsevier; 2012.Google Scholar
  2. 2.
    Ferreira V, Valck C, Sánchez G, Gingras A, Tzima S, Molina MC, Sim R, Schwaeble W, Ferreira A. The classical activation pathway of the human complement system is specifically inhibited by calreticulin from Trypanosoma cruzi. J Immunol. 2004;172(5):3042–50.PubMedCrossRefGoogle Scholar
  3. 3.
    Sosoniuk E, Vallejos G, Kenawy H, Gaboriaud C, Thielens N, Fujita T, Schwaeble W, Ferreira A, Valck C. Trypanosoma cruzi calreticulin inhibits the complement lectin pathway activation by direct interaction with L-Ficolin. Mol Immunol. 2014;60(1):80–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Ribeiro CH, Lynch NJ, Stover CM, Ali YM, Valck C, Noya-Leal F, Schwaeble WJ, Ferreira A. Deficiency in mannose-binding lectin-associated serine protease-2 does not increase susceptibility to Trypanosoma cruzi infection. Am J Trop Med Hyg. 2015;92(2):320–4.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Cardoso MS, Reis-Cunha JL, Bartholomeu DC. Evasion of the immune response by trypanosoma cruzi during acute infection. Front Immunol. 2016;6:1–15.CrossRefGoogle Scholar
  6. 6.
    Geiger A, Bossard G, Sereno D, Pissarra J, Lemesre JL, Vincendeau P, Holzmuller P. Escaping deleterious immune response in their hosts: lessons from trypanosomatids. Front Immunol. 2016;7:1–21.CrossRefGoogle Scholar
  7. 7.
    Lidani KCF, Bavia L, Ambrosio AR, de Messias-Reason IJ. The complement system: a prey of Trypanosoma cruzi. Front Microbiol. 2017;8:1–14.CrossRefGoogle Scholar
  8. 8.
    Norris KA, Bradt B, Cooper NR, So M. Characterization of a Trypanosoma cruzi C3 binding protein with functional and genetic similarities to the human complement regulatory protein, decay-accelerating factor. J Immunol. 1991;147(7):2240–7.PubMedGoogle Scholar
  9. 9.
    a Norris K, Schrimpf JE, Szabo MJ. Identification of the gene family encoding the 160-kilodalton Trypanosoma cruzi complement regulatory protein. Infect Immun. 1997;65(2):349–57.PubMedGoogle Scholar
  10. 10.
    Henrique PM, Marques T, da Silva MV, Nascentes GAN, de Oliveira CF, Rodrigues V, Gómez-Hernández C, Norris KA, Ramirez LE, Meira WSF. Correlation between the virulence of T. cruzi strains, complement regulatory protein expression levels, and the ability to elicit lytic antibody production. Exp Parasitol. 2016;170:66–72.PubMedCrossRefGoogle Scholar
  11. 11.
    Ramírez-Toloza G, Ferreira A. Trypanosoma cruzi evades the complement system as an efficient strategy to survive in the mammalian host: the specific roles of host/parasite molecules and Trypanosoma cruzi calreticulin. Front Microbiol. 2017;8:1–13.CrossRefGoogle Scholar
  12. 12.
    Romano PS, Cueto JA, Casassa AF, Vanrell MC, Gottlieb RA, Colombo MI. Molecular and cellular mechanisms involved in the Trypanosoma cruzi/host cell interplay. IUBMB Life. 2012;64(5):387–96.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Stempin C, Giordanengo L, Gea S, Cerbán F. Alternative activation and increase of Trypanosoma cruzi survival in murine macrophages stimulated by cruzipain, a parasite antigen. J Leukoc Biol. 2002;72(4):727–34.PubMedGoogle Scholar
  14. 14.
    Vitelli-Avelar DM, Sathler-Avelar R, Massara RL, Borges JD, Lage PS, Lana M, Teixeira-Carvalho A, Dias JCP, Elói-Santos SM, Martins-Filho OA. Are increased frequency of macrophage-like and natural killer (NK) cells, together with high levels of NKT and CD4+CD25high T cells balancing activated CD8+ T cells, the key to control Chagas’ disease morbidity? Clin Exp Immunol. 2006;145(1):81–92.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Chen L, Watanabe T, Watanabe H, Sendo F. Neutrophil depletion exacerbates experimental Chagas’ disease in BALB/c, but protects C57BL/6 mice through modulating the Th1/Th2 dichotomy in different directions. Eur J Immunol. 2001;31(1):265–75.PubMedCrossRefGoogle Scholar
  16. 16.
    Luna-Gomes T, Filardy AA, Rocha JDB, Decote-Ricardo D, LaRocque-de-Freitas IF, Morrot A, Bozza PT, Castro-Faria-Neto HC, DosReis GA, Nunes MP, Freire-de-Lima CG. Neutrophils increase or reduce parasite burden in trypanosoma cruzi-infected macrophages, depending on host strain: role of neutrophil elastase. PLoS One. 2014;9(3):3–10.CrossRefGoogle Scholar
  17. 17.
    Medeiros NI, Fares RC, Franco EP, Sousa GR, Mattos RT, Chaves AT, Nunes MD, Dutra WO, Correa-Oliveira R, Rocha MO, Gomes JA. Differential expression of matrix metalloproteinases 2, 9 and cytokines by neutrophils and monocytes in the clinical forms of Chagas Disease. PLoS Negl Trop Dis. 2017;11(1):e0005284.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Sousa-Rocha D, Thomaz-Tobias M, Diniz LFA, Souza PSS, Pinge-Filho P, Toledo KA. Trypanosoma cruzi and its soluble antigens induce NET release by stimulating toll-like receptors. PLoS One. 2015;10(10):1–16.CrossRefGoogle Scholar
  19. 19.
    Gil-Jaramillo N, Motta FN, Favali CBF, Bastos IMD, Santana JM. Dendritic cells: a double-edged sword in immune responses during Chagas disease. Front Microbiol. 2016;7:1–12.CrossRefGoogle Scholar
  20. 20.
    Da Costa TA, Silva MV, Mendes MT, Carvalho-Costa TM, Batista LR, Lages-Silva E, Rodrigues V, Oliveira CJ, Ramirez LE. Immunomodulation by Trypanosoma cruzi: toward understanding the association of dendritic cells with infecting TcI and TcII populations. J Immunol Res. 2014;2014:962047.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Van Overtvelt L, Vanderheyde N, Verhasselt V, Ismaili J, De Vos L, Goldman M, Willems F, Vray B, Van Overtvelt L, Vanderheyde N, Verhasselt V, Ismaili J, De Vos L, Goldman M, Willems F, Vray B. Trypanosoma cruzi infects human dendritic cells and prevents their maturation: inhibition of cytokines, HLA-DR, and costimulatory molecules. Infect Immun. 1999;67(8):4033–40.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Van Overtvelt L, Andrieu M, Verhasselt V, Connan F, Choppin J, Vercruysse V, Goldman M, Hosmalin A, Vray B. Trypanosoma cruzi down-regulates lipopolysaccharide-induced MHC class I on human dendritic cells and impairs antigen presentation to specific CD8+ T lymphocytes. Int Immunol. 2002;14(10):1135–44.PubMedCrossRefGoogle Scholar
  23. 23.
    Brodskyn C, Patricio J, Oliveira R, Lobo L, Arnholdt A, Mendonça-previato L, Barral A, Barral-netto M. Glycoinositolphospholipids from Trypanosoma cruzi Interfere with Macrophages and Dendritic Cell Responses. Society. 2002;70(7):3736–43.Google Scholar
  24. 24.
    Erdmann H, Steeg C, Koch-Nolte F, Fleischer B, Jacobs T. Sialylated ligands on pathogenic Trypanosoma cruzi interact with Siglec-E (sialic acid-binding Ig-like lectin-E). Cell Microbiol. 2009;11(11):1600–11.PubMedCrossRefGoogle Scholar
  25. 25.
    Cardillo F, Voltarelli JC, Reed SG, Silva JS. Regulation of Trypanosoma cruzi infection in mice by gamma interferon and interleukin 10: role of NK cells. Infect Immun. 1996;64(1):128–34.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Lieke T, Graefe SEB, Klauenberg U, Fleischer B, Jacobs T. NK cells contribute to the control of Trypanosoma cruzi infection by killing free parasites by perforin-independent mechanisms NK cells contribute to the control of Trypanosoma cruzi infection by killing free parasites by perforin-independent mechanisms. Infect Immun. 2004;72(12):6817–25.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Batalla EI, Pino Martínez AM, Poncini CV, Duffy T, Schijman AG, González Cappa SM, Soto CDA. Impairment in natural killer cells editing of immature dendritic cells by infection with a virulent trypanosoma cruzi population. J Innate Immun. 2013;5(5):494–504.PubMedCrossRefGoogle Scholar
  28. 28.
    Lieke T, Steeg C, Graefe SEB, Fleischer B, Jacobs T. Interaction of natural killer cells with Trypanosoma cruzi-infected fibroblasts. Clin Exp Immunol. 2006;145(2):357–64.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ferreira LRP, Ferreira FM, Nakaya HI, Deng X, da D, Cândido S, Campos de Oliveira L, Billaud J-N, Lanteri MC, Oliveira-Carvalho R, Seielstad M, Kalil J, Fernandes F, Pinho Ribeiro AL, Sabino EC, Cunha-Neto E. Blood gene signatures of Chagas disease cardiomyopathy with or without ventricular dysfunction. J Infect Dis. 2015;3(215):387–95.Google Scholar
  30. 30.
    Guilmot A, Carlier Y, Truyens C. Differential IFN-γ production by adult and neonatal blood CD56+ natural killer (NK) and NK-like-T cells in response to Trypanosoma cruzi and IL-15. Parasite Immunol. 2014;36(1):43–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Hoffman W, Lakkis FG, Chalasani G. B cells, antibodies, and more. Clin J Am Soc Nephrol. 2016;11(1):137–54.PubMedCrossRefGoogle Scholar
  32. 32.
    Acosta Rodriguez EV, Zuniga EI, Montes CL, Merino MC, Bermejo DA, Amezcua Vesely MC, Motran CC, Gruppi A. Trypanosoma cruzi infection beats the B-cell compartment favouring parasite establishment: can we strike first? Scand J Immunol. 2007;66(2–3):137–42.PubMedCrossRefGoogle Scholar
  33. 33.
    Fares RCG, Correa-Oliveira R, de Araújo FF, Keesen TSL, Chaves AT, Fiuza JA, Ferreira KS, Rocha MOC, Gomes JAS. Identification of phenotypic markers of B cells from patients with Chagas disease. Parasite Immunol. 2013;35(7–8):214–23.PubMedCrossRefGoogle Scholar
  34. 34.
    Sathler-Avelar R, Lemos EM, Reis DD, Medrano-Mercado N, Araujo-Jorge TC, Antas PRZ, Correa-Oliveira R, Teixeira-Carvalho A, Eloi-Santos SM, Favato D, Martins-Filho OA, Corrêa-Oliveira R, Teixeira-Carvalho A, Elói-Santos SM, Favato D, Martins-Filho OA, Correa-Oliveira R, Teixeira-Carvalho A, Eloi-Santos SM, Favato D, Martins-Filho OA. Phenotypic Features of Peripheral Blood Leucocytes during Early Stages of Human Infection with Trypanosoma cruzi. Scand J Immunol. 2003;58(6):655–63.PubMedCrossRefGoogle Scholar
  35. 35.
    Fernández ER, Olivera GC, Quebrada Palacio LP, González MN, Hernandez-Vasquez Y, Sirena NM, Morán ML, Ledesma Patiño OS, Postan M. Altered distribution of peripheral blood memory B cells in humans chronically infected with Trypanosoma cruzi. PLoS One. 2014;9(8):e104951.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Cherukuri A, Cheng PC, Pierce SK. The role of the CD19/CD21 complex in B cell processing and presentation of complement-tagged antigens. J Immunol. 2001;167(1):163–72.PubMedCrossRefGoogle Scholar
  37. 37.
    Krautz GM, Kissinger JC, Krettli AU. The targets of the lytic antibody response against Trypanosoma cruzi. Parasitol Today. 2000;16(1):31–4.PubMedCrossRefGoogle Scholar
  38. 38.
    Almeida IC, Milani SR, Gorin PA, Travassos LR. Complement-mediated lysis of Trypanosoma cruzi trypomastigotes by human anti-alpha-galactosyl antibodies. J Immunol. 1991;146(7):2394–400.PubMedGoogle Scholar
  39. 39.
    de Oliveira Mendes TA, Reis Cunha JL, de Almeida Lourdes R, Rodrigues Luiz GF, Lemos LD, dos Santos ARR, da Cámara ACJ, da Cunha Galvao LM, Bern C, Gilman RH, Fujiwara RT, Gazzinelli RT, Bartholomeu DC. Identification of strain-specific B-cell epitopes in Trypanosoma cruzi using genome-scale epitope prediction and high-throughput immunoscreening with peptide arrays. PLoS Negl Trop Dis. 2013;7(10):e2524.CrossRefGoogle Scholar
  40. 40.
    Carmona SJ, Nielsen M, Schafer-Nielsen C, Mucci J, Altcheh J, Balouz V, Tekiel V, Frasch AC, Campetella O, Buscaglia CA, Agüero F. Towards high-throughput immunomics for infectious diseases: use of next-generation peptide microarrays for rapid discovery and mapping of antigenic determinants. Mol Cell Proteomics. 2015;14(7):1871–84.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kumar S, Tarleton RL. The relative contribution of antibody production and CD8+ T cell function to immune control of Trypanosoma cruzi. Parasite Immunol. 1998;20(5):207–16.PubMedCrossRefGoogle Scholar
  42. 42.
    Pitcovsky TA, Buscaglia CA, Mucci J, Campetella O. A functional network of intramolecular cross-reacting epitopes delays the elicitation of neutralizing antibodies to Trypanosoma cruzi trans-sialidase. J Infect Dis. 2002;186(3):397–404.PubMedCrossRefGoogle Scholar
  43. 43.
    Buscaglia C a, Campo V a, Frasch ACC, Di Noia JM. Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nat Rev Microbiol. 2006;4(3):229–36.PubMedCrossRefGoogle Scholar
  44. 44.
    Zuniga E, Acosta-Rodriguez E, Merino MC, Montes C, Gruppi A. Depletion of immature B cells during Trypanosoma cruzi infection: involvement of myeloid cells and the cyclooxygenase pathway. Eur J Immunol. 2005;35(6):1849–58.PubMedCrossRefGoogle Scholar
  45. 45.
    Ortiz-ortiz L, Parks DE, Rodriguez M, Weigle W. Polyclonal B lymphocyte activation during Trypanosoma cruzi infection. J Immunol. 1980;124(1):121–6.PubMedGoogle Scholar
  46. 46.
    Minoprio P, Burlen O, Pereira P, Guilbert B, Andrade L, Hontebeyrie-Joskowciz M, Coutinho A. Most B cells in acute Trypanosoma cruzi infection lack parasite specificity. Scand J Immunol. 1988;28(5):553–61.PubMedCrossRefGoogle Scholar
  47. 47.
    Bermejo DA, Amezcua Vesely MC, Khan M, Acosta Rodriguez EV, Montes CL, Amezcua Vesely MC, Toellner KM, Mohr E, Taylor D, Cunningham AF, Gruppi A. Trypanosoma cruzi infection induces a massive extrafollicular and follicular splenic B-cell response which is a high source of non-parasite-specific antibodies. Immunology. 2011;132(1):123–33.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Bryan MA, Guyach SE, Norris KA. Specific humoral immunity versus polyclonal B Cell activation in trypanosoma cruzi infection of susceptible and resistant mice. PLoS Negl Trop Dis. 2010;4(7):e733.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Grauert MR, Houdayer M, Hontebeyrie-Joskowciz M. Trypanosoma cruzi infection enhances polyreactive antibody response in an acute case of human Chagas’ disease. Clin Exp Immunol. 1993;93(1):85–92.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Montes CL, Acosta-Rodríguez EV, Mucci J, Zuniga EI, Campetella O, Gruppi A. A Trypanosoma cruzi antigen signals CD11b+ cells to secrete cytokines that promote polyclonal B cell proliferation and differentiation into antibody-secreting cells. Eur J Immunol. 2006;36(6):1474–85.PubMedCrossRefGoogle Scholar
  51. 51.
    Reina-San-Martín B, Degrave W, Rougeot C, Cosson a, Chamond N, Cordeiro-Da-Silva a, Arala-Chaves M, Coutinho a, Minoprio P. A B-cell mitogen from a pathogenic trypanosome is a eukaryotic proline racemase. Nat Med. 2000;6(8):890–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Gao W, Wortis HH, Pereira M a. The Trypanosoma cruzi trans-sialidase is a T cell-independent B cell mitogen and an inducer of non-specific Ig secretion. Int Immunol. 2002;14(3):299–308.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Bonney KM, Engman DM. Autoimmune pathogenesis of Chagas heart disease: looking back, looking ahead. Am J Pathol. 2015;185(6):1537–47.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Gironès N, Cuervo H, Fresno M. Trypanosoma cruzi-induced molecular mimicry and Chagas’ disease. In: Molecular mimicry: infection-inducing autoimmune disease. New York, NY: Springer; 2005. p. 89–123.CrossRefGoogle Scholar
  55. 55.
    Gómez K, Longhi S, Levin M. The genesis of anti-cardiac G protein coupled receptor antibodies in Chagas disease. In: Peter J-C, editor. Immunology of G-protein coupled receptors. Ketala: Dipak Haldar, S.G.; 2006. p. 45–63.Google Scholar
  56. 56.
    Labovsky V, Smulski C, Gómez K, Levy G, Levin M. Anti-β-adrenergic receptor autoantibodies in patients with chronic Chagas heart disease. Clin Exp Immunol. 2007;140:440–9.CrossRefGoogle Scholar
  57. 57.
    Cunha-Neto E, Teixeira PC, Fonseca SG, Bilate AM, Kalil J. Myocardial gene and protein expression profiles after autoimmune injury in Chagas’ disease cardiomyopathy. Autoimmun Rev. 2011;10(3):163–5.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Leon JS, Engman DM. Autoimmunity in Chagas heart disease. Int J Parasitol. 2001;31(5–6):555–61.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Ternynck T, Bleux C, Gregoire J, Avrameas S, Kanellopoulos LC. Comparison between autoantibodies arising during Trypanosoma cruzi infection in mice and natural autoantibodies. J Immunol. 1990;144(4):1504–11.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Cardillo F, Postol E, Nihei J, Aroeira LS, Nomizo A, Mengel J. B cells modulate T cells so as to favour T helper type 1 and CD8+ T-cell responses in the acute phase of Trypanosoma cruzi infection. Immunology. 2007;122(4):584–95.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Bermejo D a, Jackson SW, Gorosito-Serran M, Acosta-Rodriguez EV, Amezcua-Vesely MC, Sather BD, Singh AK, Khim S, Mucci J, Liggitt D, Campetella O, Oukka M, Gruppi A, Rawlings DJ. Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORγt and Ahr that leads to IL-17 production by activated B cells. Nat Immunol. 2013;14(5):514–22.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Minoprio P, el Cheikh MC, Murphy E, Hontebeyrie-Joskowicz M, Coffman R, Coutinho A, O’Garra A. Xid-associated resistance to experimental Chagas’ disease is IFN-gamma dependent. J Immunol. 1993;151(8):4200–8.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Rosser EC, Mauri C. Regulatory B cells: origin, phenotype, and function. Immunity. 2015;42(4):607–12.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Laidlaw BJ, Craft JE, Kaech SM. The multifaceted role of CD4+ T cells in CD8+ T cell memory. Nat Rev Immunol. 2016;16(2):102–11.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Appay V, Van Lier RAW, Sallusto F, Roederer M. Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytom Part A. 2008;73(11):975–83.CrossRefGoogle Scholar
  66. 66.
    Dutra WO, Gollob KJ. Current concepts in immunoregulation and pathology of human Chagas disease. Curr Opin Infect Dis. 2008;21(3):287–92.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Sartori AMC, Neto JE, Nunes EV, Braz LMA, Caiaffa HH, Oliveira OD, Neto VA, Shikanai-Yasuda MA. Trypanosoma cruzi parasitemia in chronic Chagas disease: comparison between human immunodeficiency virus (HIV)-positive and HIV-negative patients. J Infect Dis. 2002;186:872–5.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Vaidian AK, Weiss LM, Tanowitz HB. Chagas’ disease and AIDS. Kinetoplastid Biol Dis. 2004;3(1):2.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Virgilio S, Pontes C, Dominguez MR, Ersching J, Rodrigues MM, Vasconcelos JR, dos Santos Virgilio F, Pontes C, Dominguez MR, Ersching J, Rodrigues MM, Vasconcelos JR. CD8+ T Cell-mediated immunity during Trypanosoma cruzi infection: a path for vaccine development? Mediators Inflamm. 2014;2014:243786.Google Scholar
  70. 70.
    Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745–63.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lanzavecchia A, Sallusto F. Understanding the generation and function of memory T cell subsets. Curr Opin Immunol. 2005;17(3):326–32.PubMedCrossRefGoogle Scholar
  72. 72.
    Fiuza JA, Fujiwara RT, Gomes JAS, Rocha MODC, Chaves AT, De Araújo FF, Fares RCG, Teixeira-Carvalho A, Martins-Filho ODA, Cançado GGL, Correa-Oliveira R. Profile of central and effector memory T cells in the progression of chronic human Chagas disease. PLoS Negl Trop Dis. 2009;3(9):e512.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Publ Gr. 2015;15(8):486–99.Google Scholar
  74. 74.
    Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44(5):989–1004.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Leavey JK, Tarleton RL. Cutting edge: dysfunctional CD8+ T cells reside in nonlymphoid tissues during chronic Trypanosoma cruzi infection. J Immunol. 2003;170(5):2264–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Tarleton RL. CD8+ T cells in Trypanosoma cruzi infection. Semin Immunopathol. 2015;37(3):233–8.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Laucella SA, Postan M, Martin D, Hubby Fralish B, Albareda MC, Alvarez MG, Lococo B, Barbieri G, Viotti RJ, Tarleton RL. Frequency of interferon- gamma -producing T cells specific for Trypanosoma cruzi inversely correlates with disease severity in chronic human Chagas disease. J Infect Dis. 2004;189(5):909–18.PubMedCrossRefGoogle Scholar
  78. 78.
    Albareda MC, De Rissio AM, Tomas G, Serjan A, Alvarez MG, Viotti R, Fichera LE, Esteva MI, Potente D, Armenti A, Tarleton RL, Laucella SA. Polyfunctional T cell responses in children in early stages of chronic trypanosoma cruzi infection contrast with monofunctional responses of long-term infected adults. PLoS Negl Trop Dis. 2013;7(12):e2575.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Alvarez MG, Bertocchi GL, Cooley G, Albareda MC, Viotti R, Perez-Mazliah DE, Lococo B, Castro Eiro M, Laucella SA, Tarleton RL. Treatment success in Trypanosoma cruzi infection is predicted by early changes in serially monitored parasite-specific T and B cell responses. PLoS Negl Trop Dis. 2016;10(4):e0004657.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Junqueira C, Caetano B, Bartholomeu DC, Melo MB, Ropert C, Rodrigues MM, Gazzinelli RT. The endless race between Trypanosoma cruzi and host immunity: lessons for and beyond Chagas disease. Expert Rev Mol Med. 2010;12:e29.PubMedCrossRefGoogle Scholar
  81. 81.
    Tarleton RL. Depletion of CD8+ T cells increases susceptibility and reverses vaccine-induced immunity in mice infected with Trypanosoma cruzi. J Immunol. 1990;144:717–24.PubMedGoogle Scholar
  82. 82.
    Tarleton RL, Koller BH, Latour A, Postan M. Susceptibility of β2-microglobulin-deficient mice to Trypanosoma cruzi infection. Nature. 1992;356:338–40.PubMedCrossRefGoogle Scholar
  83. 83.
    Albareda MC, Laucella SA, Alvarez MG, Armenti AH, Bertochi G, Tarleton RL, Postan M. Trypanosoma cruzi modulates the profile of memory CD8+ T cells in chronic Chagas’ disease patients. Int Immunol. 2006;18(3):465–71.PubMedCrossRefGoogle Scholar
  84. 84.
    Tzelepis F, de Alencar B, Penido M, Gazzinelli R, Persechini P, Rodrigues MM. Distinct kinetics of effector CD8+ cytotoxic T cells after infection with Trypanosoma cruzi in Naıve or vaccinated mice. Infect Immun. 2006;74(4):2477–81.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Padilla AM, Bustamante JM, Tarleton RL. CD8+ T cells in Trypanosoma cruzi infection. Curr Opin Immunol. 2009;21(4):385–90.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Lewinsohn DA, Lewinsohn DM, Scriba TJ. Polyfunctional CD4+T cells as targets for tuberculosis vaccination. Front Immunol. 2017;8:1262.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Thakur A, Pedersen LE, Jungersen G. Immune markers and correlates of protection for vaccine induced immune responses. Vaccine. 2012;30(33):4907–20.PubMedCrossRefGoogle Scholar
  88. 88.
    Mateus J, Lasso P, Pavia P, Rosas F, Roa N, Valencia-Hernández CA, González JM, Puerta CJ, Cuéllar A. Low frequency of circulating CD8+ T stem cell memory cells in chronic chagasic patients with severe forms of the disease. PLoS Negl Trop Dis. 2015;9(1):e3432.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Souza PEA, Rocha MOC, Menezes CAS, Coelho JS, Chaves ACL, Gollob KJ, Dutra WO. Trypanosoma cruzi infection induces differential modulation of costimulatory molecules and cytokines by monocytes and T cells from patients with indeterminate and cardiac Chagas’ disease. Infect Immun. 2007;75(4):1886–94.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Argüello RJ, Albareda MC, Alvarez MG, Bertocchi G, Armenti AH, Vigliano C, Meckert PC, Tarleton RL, Laucella SA. Inhibitory receptors are expressed by Trypanosoma cruzi-specific effector T cells and in hearts of subjects with chronic Chagas disease. PLoS One. 2012;7(5):e35966.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Costa RP, Gollob KJ, Fonseca LL, Rocha MOC, Chaves ACL, Medrano-mercado N, Arau  Jo-jorge TC, Antas PRZ, Colley DG, Correa-oliveira R, Gazzinelli G, Carvalho-parra J, Dutra WO. T-cell repertoire analysis in acute and chronic human Chagas’ disease: differentail frequencies of Vb5 expressing T cells. Scand J Immunol. 2000;51:511–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Alvarez MG, Postan M, Weatherly DB, Albareda MC, Sidney J, Sette A, Olivera C, Armenti AH, Tarletona RL, Laucella SA, Tarleton RL, Laucella SA, Tarletona RL, Laucella SA, Tarleton RL, Laucella SA. HLA class I-T cell epitopes from trans-sialidase proteins reveal functionally distinct subsets of CD8+ T cells in chronic Chagas disease. PLoS Negl Trop Dis. 2008;2(9):e288.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Martin DL, Weatherly DB, Laucella SA, Cabinian M a, Crim MT, Sullivan S, Heiges M, Craven SH, Rosenberg CS, Collins MH, Sette A, Postan M, Tarleton RL. CD8+ T-cell responses to Trypanosoma cruzi are highly focused on strain-variant trans-sialidase epitopes. PLoS Pathog. 2006;2(8):0731–40.CrossRefGoogle Scholar
  94. 94.
    Tzelepis F, de Alencar BCG, Penido MLO, Claser C, Machado AV, Bruna-Romero O, Gazzinelli RT, Rodrigues MM. Infection with Trypanosoma cruzi restricts the repertoire of parasite-specific CD8+ T cells leading to immunodominance. J Immunol. 2008;180(3):1737–48.PubMedCrossRefGoogle Scholar
  95. 95.
    Engman DM, Leon JS. Pathogenesis of Chagas heart disease: role of autoimmunity. Acta Trop. 2002;81(2):123–32.PubMedCrossRefGoogle Scholar
  96. 96.
    Scharfstein J, Gomes J d AS, Correa-Oliveira R. Back to the future in Chagas disease: from animal models to patient cohort studies, progress in immunopathogenesis research. Mem Inst Oswaldo Cruz. 2009;104(Suppl 1):187–98.PubMedCrossRefGoogle Scholar
  97. 97.
    Lannes-Vieira J. Trypanosoma cruzi-elicited CD8+ T cell-mediated myocarditis: chemokine receptors and adhesion molecules as potential therapeutic targets to control chronic inflammation? Mem Inst Oswaldo Cruz. 2003;98(3):299–304.PubMedCrossRefGoogle Scholar
  98. 98.
    da Silveira ABM, Lemos EM, Adad SJ, Correa-Oliveira R, Furness JB, D’Avila Reis D. Megacolon in Chagas disease: a study of inflammatory cells, enteric nerves, and glial cells. Hum Pathol. 2007;38(8):1256–64.PubMedCrossRefGoogle Scholar
  99. 99.
    Fonseca SG, Reis MM, Coelho V, Nogueira LG, Monteiro SM, Mairena EC, Bacal F, Bocchi E, Guilherme L, Zheng XX, Liew FY, Higuchi ML, Kalil J, Cunha-Neto E. Locally produced survival cytokines IL-15 and IL-7 may be associated to the predominance of CD8+ T cells at heart lesions of human chronic Chagas disease cardiomyopathy. Scand J Immunol. 2007;66(2–3):362–71.PubMedCrossRefGoogle Scholar
  100. 100.
    Dutra WO, Menezes C a S, Magalhães LMD, Gollob KJ. Immunoregulatory networks in human Chagas disease. Parasite Immunol. 2014;36(8):377–87.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Gomes JAS, Rocha MOC, Gazzinelli G. Evidence that development of severe cardiomyopathy in human Chagas’ disease is due to a Th1-specific immune response. Infect Immun. 2003;71(3):1185–93.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Gomes JAS, Bahia-oliveira LMG, Rocha OC, Busek SCU, Teixeira MM, Silva JS, Correa-oliveira R, Ota M, Rocha C. Type 1 chemokine receptor expression in Chagas’ disease correlates with morbidity in cardiac patients. Infect Immun. 2005;73(12):7960–6.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ben Younes-Chennoufi A, Said G, Eisen H, Durand A, Hontebeyrie-Joskowicz M. Cellular immunity to Trypanosoma cruzi is mediated by helper T cells (CD4+). Trans R Soc Trop Med Hyg. 1988;82(1):84–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Padilla A, Xu D, Martin D, Tarleton R. Limited role for CD4+ T-cell help in the initial priming of Trypanosoma cruzi-specific CD8+ T cells. Infect Immun. 2007;75(1):231–5.PubMedCrossRefGoogle Scholar
  105. 105.
    Annunziato F, Romagnani S. Heterogeneity of human effector CD4+ T cells. Arthritis Res Ther. 2009;11(6):257.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Sallusto F. Heterogeneity of human CD4+ T cells against microbes. Annu Rev Immunol. 2016;34(1):317–34.PubMedCrossRefGoogle Scholar
  107. 107.
    Silva J, Morrisey P, Grabstein K, Mohler K, Anderson D, Reed S. Interleukin 10 and Interferon γ regulation of experimental Trypanosoma cruzi infection. J Exp Med. 1992;175:169–74.PubMedCrossRefGoogle Scholar
  108. 108.
    Petray PB, Rottenberg ME, Bertot G, Corral RS, Diaz A, Örn A, Grinstein S. Effect of anti-γ-interferon and anti-interleukin-4 administration on the resistance of mice against infection with reticulotropic and myotropic strains of Trypanosoma cruzi. Immunol Lett. 1993;35(1):77–80.PubMedCrossRefGoogle Scholar
  109. 109.
    Rodrigues MM, Ribeirão M, Pereira-Chioccola V, Renia L, Costa F. Predominance of CD4 Th1 and CD8 Tc1 cells revealed by characterization of the cellular immune response generated by immunization with a DNA vaccine containing a Trypanosoma cruzi gene. Infect Immun. 1999;67(8):3855–63.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Kumar S, Tarleton RL. Antigen-specific Th1 but not Th2 cells provide protection from lethal Trypanosoma cruzi infection in mice. J Immunol. 2001;166(7):4596–603.PubMedCrossRefGoogle Scholar
  111. 111.
    Hoft DF, Eickhoff CS. Type 1 immunity provides both optimal mucosal and systemic protection against a mucosally invasive, intracellular pathogen. Infect Immun. 2005;73(8):4934–40.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Albareda MC, Olivera GC, a Laucella S, Alvarez MG, Fernandez ER, Lococo B, Viotti R, Tarleton RL, Postan M. Chronic human infection with Trypanosoma cruzi drives CD4+ T cells to immune senescence. J Immunol. 2009;183(6):4103–8.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Longhi SA, Atienza A, Perez Prados G, Buying A, Balouz V, Buscaglia C a, Santos R, Tasso LM, Bonato R, Chiale P, Pinilla C, Judkowski V a, Gómez KA, Prados GP, Buying A, Balouz V, Buscaglia C a, Santos R, Tasso LM, Bonato R, Chiale P, Perez Prados G, Buying A, Balouz V, Buscaglia C a, Santos R, Tasso LM, Bonato R, Chiale P, Pinilla C, Judkowski V a, Gómez K a, Prados GP, Buying A, Balouz V, Buscaglia C a, Santos R, Tasso LM, Bonato R, Chiale P. Cytokine production but lack of proliferation in peripheral blood mononuclear cells from chronic Chagas’ Disease cardiomyopathy patients in response to T. cruzi ribosomal P proteins. PLoS Negl Trop Dis. 2014;8(6):e2906.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Vitelli-Avelar DM, Sathler-Avelar R, Dias JCP, Pascoal VPM, Teixeira-Carvalho A, Lage PS, Elói-Santos SM, Corrêa-Oliveira R, Martins-Filho OA. Chagasic patients with indeterminate clinical form of the disease have high frequencies of circulating CD3 +CD16 -CD56 + natural killer T cells and CD4 +CD25 High regulatory T lymphocytes. Scand J Immunol. 2005;62(3):297–308.PubMedCrossRefGoogle Scholar
  115. 115.
    da Silveira ABM, Fortes de Araújo F, Freitas MAR, Gomes JAS, Chaves AT, de Oliveira EC, Neto SG, Luquetti AO, da Cunha Souza G, Bernardino Júnior R, Fujiwara R, d’Ávila Reis D, Correa-Oliveira R. Characterization of the presence and distribution of Foxp3+ cells in chagasic patients with and without megacolon. Hum Immunol. 2009;70(1):65–7.PubMedCrossRefGoogle Scholar
  116. 116.
    de Araújo FF, Vitelli-Avelar DM, Teixeira-Carvalho A, Antas PRZ, Gomes JAS, Sathler-Avelar R, Rocha MOC, Elói-Santos SM, Pinho RT, Correa-Oliveira R, Martins-Filho OA. Regulatory T cells phenotype in different clinical forms of Chagas’ disease. PLoS Negl Trop Dis. 2011;5(5):1–8.CrossRefGoogle Scholar
  117. 117.
    Kotner J, Tarleton R. Endogenous CD4+ CD25+ regulatory T cells have a limited role in the control of Trypanosoma cruzi infection in mice. Infect Immun. 2007;75(2):861–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Martin DL, Postan M, Lucas P, Gress R, Tarleton RL. TGF-β regulates pathology but not tissue CD8+ T cell dysfunction during experimental Trypanosoma cruzi infection. Eur J Immunol. 2007;37(10):2764–71.PubMedCrossRefGoogle Scholar
  119. 119.
    Guhl F, Lazdins-Helds J. Reporte sobre la enfermedad de Chagas. Geneva: Grupo de Trabajo Científico, WHO; 2007. p. 104.Google Scholar
  120. 120.
    Morillo CA, Marin-Neto JA, Avezum A, Sosa-Estani S, Rassi A, Rosas F, Villena E, Quiroz R, Bonilla R, Britto C, Guhl F, Velazquez E, Bonilla L, Meeks B, Rao-Melacini P, Pogue J, Mattos A, Lazdins J, Rassi A, Connolly SJ, Yusuf S. Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N Engl J Med. 2015;373(14):1295–306.PubMedCrossRefGoogle Scholar
  121. 121.
    Viotti R, Vigliano C, Armenti H, Segura E. Treatment of chronic Chagas’ disease with benznidazole: clinical and serologic evolution of patients with long-term follow-up. Am Heart J. 1994;127(1):151–62.PubMedCrossRefGoogle Scholar
  122. 122.
    Fabbro DL, Streiger ML, Arias ED, Bizai ML, Del Barco M, Amicone NA. Trypanocide treatment among adults with chronic Chagas disease living in Santa Fe City (Argentina), over a mean follow-up of 21 years: parasitological, serological and clinical evolution. Rev Soc Bras Med Trop. 2007;40(1):1–10.PubMedCrossRefGoogle Scholar
  123. 123.
    Laucella S a, Mazliah DP, Bertocchi G, Alvarez MG, Cooley G, Viotti R, Albareda MC, Lococo B, Postan M, Armenti A, Tarleton RL. Changes in Trypanosoma cruzi-specific immune responses after treatment: surrogate markers of treatment efficacy. Clin Infect Dis. 2009;49(11):1675–84.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Day CL, Abrahams DA, Lerumo L, Janse van Rensburg E, Stone L, O’rie T, Pienaar B, de Kock M, Kaplan G, Mahomed H, Dheda K, Hanekom WA. Functional capacity of mycobacterium tuberculosis-specific T cell responses in humans is associated with mycobacterial load. J Immunol. 2011;187(5):2222–32.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Beyer M, Abdullah Z, Chemnitz JM, Maisel D, Sander J, Lehmann C, Thabet Y, Shinde PV, Schmidleithner L, Köhne M, Trebicka J, Schierwagen R, Hofmann A, Popov A, Lang KS, Oxenius A, Buch T, Kurts C, Heikenwalder M, Fätkenheuer G, Lang PA, Hartmann P, Knolle PA, Schultze JL. Tumor-necrosis factor impairs CD4+ T cell–mediated immunological control in chronic viral infection. Nat Immunol. 2016;17(5):593–603.PubMedCrossRefGoogle Scholar
  126. 126.
    Vitelli-Avelar DM, Sathler-Avelar R, Teixeira-Carvalho A, Pinto Dias JC, Gontijo ED, Faria AM, Elói-Santos SM, Martins-Filho OA. Strategy to assess the overall cytokine profile of circulating leukocytes and its association with distinct clinical forms of human Chagas disease. Scand J Immunol. 2008;68(5):516–25.PubMedCrossRefGoogle Scholar
  127. 127.
    Sathler-Avelar R, Vitelli-Avelar DM, Massara RL, Borges JD, Lana M, Teixeira-Carvalho A, Dias JCP, Elói-Santos SM, Martins-Filho OA. Benznidazole treatment during early-indeterminate Chagas’ disease shifted the cytokine expression by innate and adaptive immunity cells toward a type 1-modulated immune profile. Scand J Immunol. 2006;64(5):554–63.PubMedCrossRefGoogle Scholar
  128. 128.
    Sathler-Avelar R, Vitelli-Avelar DM, Massara RL, de Lana M, Pinto Dias JC, Teixeira-Carvalho A, Elói-Santos SM, Martins-Filho OA. Etiological treatment during early chronic indeterminate Chagas disease incites an activated status on innate and adaptive immunity associated with a type 1-modulated cytokine pattern. Microbes Infect. 2008;10(2):103–13.PubMedCrossRefGoogle Scholar
  129. 129.
    Sathler-Avelar R, Vitelli-Avelar DM, Elói-Santos SM, Gontijo ED, Teixeira-Carvalho A, Martins-Filho OA. Blood leukocytes from benznidazole-treated indeterminate Chagas disease patients display an overall type-1-modulated cytokine profile upon short-term in vitro stimulation with trypanosoma cruzi antigens. BMC Infect Dis. 2012;12(1):123.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Campi-Azevedo AC, Gomes JAS, Teixeira-Carvalho A, Silveira-Lemos D, Vitelli-Avelar DM, Sathler-Avelar R, Peruhype-Magalhães V, Béla SR, Silvestre KF, Batista MA, Schachnik NCC, Correa-Oliveira R, Eloi-Santos SM, Martins-Filho OA. Etiological treatment of Chagas disease patients with benznidazole lead to a sustained pro-inflammatory profile counterbalanced by modulatory events. Immunobiology. 2015;220(5):564–74.PubMedCrossRefGoogle Scholar
  131. 131.
    Rassi A, Marin-Neto JA, Rassi A. Chronic Chagas cardiomyopathy: a review of the main pathogenic mechanisms and the efficacy of aetiological treatment following the BENznidazole evaluation for interrupting trypanosomiasis (BENEFIT) trial. Mem Inst Oswaldo Cruz. 2017;112(3):224–35.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Viotti R, Vigliano C, Álvarez MG, Lococo B, Petti M, Bertocchi G, Armenti A, de Rissio AM, Cooley G, Tarleton R, Laucella S. Impact of aetiological treatment on conventional and multiplex serology in chronic Chagas disease. PLoS Negl Trop Dis. 2011;5(9):e1314.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Niborski LL, Grippo V, Lafón SO, Levitus G, García-Bournissen F, Ramirez JC, Burgos JM, Bisio M, Juiz NA, Ayala V, Coppede M, Herrera V, López C, Contreras A, Gómez KA, Elean JC, Mujica HD, Schijman AG, Levin MJ, Longhi SA. Serological based monitoring of a cohort of patients with chronic Chagas disease treated with benznidazole in a highly endemic area of northern Argentina. Mem Inst Oswaldo Cruz. 2016;111(6):365–71.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Balouz V, Buscaglia CA, Aires B. Chagas disease diagnostic applications: present knowledge and future steps. In: Advances in parasitology. London: Academic Press; 2017. p. 1–45.Google Scholar
  135. 135.
    Schijman A, Burgos J, Marcet P. Molecular tools and strategies for diagnosis of Chagas Disease and leishmaniasis. In: Santos da Silva M, Cano MIN, editors. Frontiers in parasitology. Sharjah: Bentham Books; 2017. p. 394–453.CrossRefGoogle Scholar
  136. 136.
    Fairfax KA, Kallies A, Nutt SL, Tarlinton DM. Plasma cell development: from B-cell subsets to long-term survival niches. Semin Immunol. 2008;20(1):49–58.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Tangye SG. Staying alive: regulation of plasma cell survival. Trends Immunol. 2011;32(12):595–602.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Hammarlund E, Thomas A, Amanna IJ, Holden LA, Slayden OD, Park B, Gao L, Slifka MK. Plasma cell survival in the absence of B cell memory. Nat Commun. 2017;8(1):1781.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gonzalo R. Acevedo
    • 1
  • Magali C. Girard
    • 1
  • Karina A. Gómez
    • 1
    Email author
  1. 1.Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET)Buenos AiresArgentina

Personalised recommendations