Biochemical Assessment of Placental Function

  • Irene Martín-Estal
  • Miguel Angel Rodriguez-Zambrano
  • Inma Castilla-Cortázar


The placenta is a key organ in pregnancy because during this period it supports normal fetal growth and development. The placenta is responsible for nutrient and oxygen transport to the fetus and also secretes several hormones and growth factors important for fetal development. An alteration in placental functions or development could lead to pregnancy disorders (preeclampsia, FGR, miscarriage, and gestational diabetes, among others). It is known that the placenta alters the expression levels of several placental biomarkers, “opening a door” to the study of such concentrations as prognostic factors of the aforementioned pregnancy disorders. Until now, although different placental biomarkers have been associated with pregnancy syndromes, no biomarker has been effectively used in clinical practice to diagnose and predict such diseases.


Placental dysfunction Placental biomarkers Fetal growth restriction Intrauterine environment Pregnancy disorders 



A disintegrin and metalloprotease 12




Advanced glycation end products


Endothelial nitric oxide synthase


Fetal growth restriction


Gestational diabetes mellitus


Glucose transporters


Glucose-regulated protein 78


Maternal hemoglobin


Fetal hemoglobin


Human chorionic gonadotropin


Hypoxia-inducible factor-1


Heat shock protein 70


Insulin-like growth factor-1


Insulin-like growth factor-2


Insulin-like binding proteins


Insulin-like growth factors


Low-density lipoproteins


Large for gestational age


Mitochondrial DNA


Nitric oxide


Neuropeptide Y


Neural tube defects


Pregnancy-associated plasma protein A


Placental growth factor


Placental growth hormone


Placental lactogen


Partial pressure of oxygen


Placental protein 13


Glycosylated pregnancy-specific glycoprotein 1


Parathyroid hormone-related protein


Renin-angiotensin-aldosterone system


Reduced fetal movements


Reactive oxygen species


Soluble endoglin


Soluble fms-like tyrosine kinase-1 or soluble VEGF receptor-1


Small for gestational age


Vascular endothelial growth factor


β-Human chorionic gonadotropin


  1. 1.
    Gude NM, Roberts CT, Kalionis B, King RG. Growth and function of the normal human placenta. Thromb Res. 2004;114:397–407.PubMedCrossRefGoogle Scholar
  2. 2.
    Hiden U, Glitzner E, Hartmann M, Desoye G. Insulin and the IGF system in the human placenta of normal and diabetic pregnancies. J Anat. 2009;215:60–8.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Murphy VE, Smith R, Giles WB, Clifton VL. Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus. Endocr Rev. 2006;27:141–69.PubMedCrossRefGoogle Scholar
  4. 4.
    Martín-Estal I, de la Garza RG, Castilla-Cortázar I. Intrauterine growth retardation (IUGR) as a novel condition of insulin-like growth factor-1 (IGF-1) deficiency. Rev Physiol Biochem Pharmacol. 2016;170:1–35.Google Scholar
  5. 5.
    Illsley NP. Placental metabolism. In: Kay HH, Nelson DM, Wang Y, editors. Placenta. 1st ed. Oxford: Wiley-Blackwell; 2011. p. 50–6.CrossRefGoogle Scholar
  6. 6.
    Fowden AL, Sferruzzi-Perri AN, Coan PM, Constancia M, Burton GJ. Placental efficiency and adaptation: endocrine regulation. J Physiol. 2009;587:3459–72.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Vaughan OR, Sferruzzi-Perri AN, Coan PM, Fowden AL. Environmental regulation of placental phenotype: implications for fetal growth. Reprod Fertil Dev. 2011;24:80–96.PubMedCrossRefGoogle Scholar
  8. 8.
    Sferruzzi-Perri AN, Vaughan OR, Forhead AJ, Fowden AL. Hormonal and nutritional drivers of intrauterine growth. Curr Opin Clin Nutr Metab Care. 2013;16:298–309.PubMedCrossRefGoogle Scholar
  9. 9.
    Higgins JS, Vaughan OR, Fernandez de Liger E, Fowden AL, Sferruzzi-Perri AN. Placental phenotype and resource allocation to fetal growth are modified by the timing and degree of hypoxia during mouse pregnancy. J Physiol. 2016;594:1341–56.PubMedCrossRefGoogle Scholar
  10. 10.
    Belkacemi L, Nelson DM, Desai M, Ross MG. Maternal undernutrition and fetal programming: role of the placenta. In:Placenta. Oxford: Wiley-Blackwell; 2011. p. 1–9.Google Scholar
  11. 11.
    Glazier JD, Jansson T. Placental transport in early pregnancy – a workshop report. Placenta. 2004;25(Suppl A):S57–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Burton GJ, Watson AL, Hempstock J, Skepper JN, Jauniaux E. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab. 2002;87:2954–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Glazier JD, Harrington B, Sibley CP, Turner M. Placental function in maternofetal exchange. In: Rodeck CH, Whittle M, editors. Fetal medicine: basic science and clinical practice. London: Churchill Livingstone; 1999. p. 111–26.Google Scholar
  14. 14.
    Burton GJ, Fowden AL. The placenta: a multifaceted, transient organ. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370:20140066.CrossRefGoogle Scholar
  15. 15.
    Carter AM. Placental oxygen consumption. Part I: in vivo studies – a review. Placenta. 2000;21(Suppl A):S31–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Schneider H. Placental oxygen consumption. Part II: in vitro studies – a review. Placenta. 2000;21(Suppl A):S38–44.PubMedCrossRefGoogle Scholar
  17. 17.
    McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev. 2005;85:571–633.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Myatt L. Placental adaptive responses and fetal programming. J Physiol. 2006;572:25–30.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Giussani DA, Davidge ST. Developmental programming of cardiovascular disease by prenatal hypoxia. J Dev Orig Health Dis. 2013;4:328–37.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang S, Regnault TR, Barker PL, Botting KJ, McMillen IC, McMillan CM, et al. Placental adaptations in growth restriction. Nutrients. 2015;7:360–89.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hutter D, Kingdom J, Jaeggi E. Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: a review. Int J Pediatr. 2010;2010:401323.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Zamudio S. The placenta at high altitude. High Alt Med Biol. 2003;4:171–91.PubMedCrossRefGoogle Scholar
  23. 23.
    Tissot van Patot M, Grilli A, Chapman P, Broad E, Tyson W, Heller DS, et al. Remodelling of uteroplacental arteries is decreased in high altitude placentae. Placenta. 2003;24:326–35.PubMedCrossRefGoogle Scholar
  24. 24.
    Ali KZ, Burton GJ, Morad N, Ali ME. Does hypercapillarization influence the branching pattern of terminal villi in the human placenta at high altitude? Placenta. 1996;17:677–82.PubMedCrossRefGoogle Scholar
  25. 25.
    Krebs C, Macara LM, Leiser R, Bowman AW, Greer IA, Kingdom JC. Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is associated with maldevelopment of the placental terminal villous tree. Am J Obstet Gynecol. 1996;175:1534–42.PubMedCrossRefGoogle Scholar
  26. 26.
    Mayhew TM. Thinning of the intervascular tissue layers of the human placenta is an adaptive response to passive diffusion in vivo and may help to predict the origins of fetal hypoxia. Eur J Obstet Gynecol Reprod Biol. 1998;81:101–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Tissot van Patot MC, Murray AJ, Beckey V, Cindrova-Davies T, Johns J, Zwerdlinger L, et al. Human placental metabolic adaptation to chronic hypoxia, high altitude: hypoxic preconditioning. Am J Physiol Regul Integr Comp Physiol. 2010;298:R166–R72.PubMedCrossRefGoogle Scholar
  28. 28.
    Parraguez VH, Atlagich M, Díaz R, Cepeda R, González C, De los Reyes M, et al. Ovine placenta at high altitudes: comparison of animals with different times of adaptation to hypoxic environment. Anim Reprod Sci. 2006;95:151–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Jansson N, Pettersson J, Haafiz A, Ericsson A, Palmberg I, Tranberg M, et al. Down-regulation of placental transport of amino acids precedes the development of intrauterine growth restriction in rats fed a low protein diet. J Physiol. 2006;576:935–46.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Jones HN, Woollett LA, Barbour N, Prasad PD, Powell TL, Jansson T. High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/BL6 mice. FASEB J. 2009;23:271–8.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Coan PM, Vaughan OR, Sekita Y, Finn SL, Burton GJ, Constancia M, et al. Adaptations in placental phenotype support fetal growth during undernutrition of pregnant mice. J Physiol. 2010;588:527–38.PubMedCrossRefGoogle Scholar
  32. 32.
    Rosario FJ, Jansson N, Kanai Y, Prasad PD, Powell TL, Jansson T. Maternal protein restriction in the rat inhibits placental insulin, mTOR, and STAT3 signaling and down-regulates placental amino acid transporters. Endocrinology. 2011;152:1119–29.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sferruzzi-Perri AN, Vaughan OR, Coan PM, Suciu MC, Darbyshire R, Constancia M, et al. Placental-specific Igf2 deficiency alters developmental adaptations to undernutrition in mice. Endocrinology. 2011;152:3202–12.PubMedCrossRefGoogle Scholar
  34. 34.
    Sferruzzi-Perri AN, Vaughan OR, Haro M, Cooper WN, Musial B, Charalambous M, et al. An obesogenic diet during mouse pregnancy modifies maternal nutrient partitioning and the fetal growth trajectory. FASEB J. 2013;27:3928–37.PubMedCrossRefGoogle Scholar
  35. 35.
    Bacon BJ, Gilbert RD, Kaufmann P, Smith AD, Trevino FT, Longo LD. Placental anatomy and diffusing capacity in guinea pigs following long-term maternal hypoxia. Placenta. 1984;5:475–87.PubMedCrossRefGoogle Scholar
  36. 36.
    Gheorghe CP, Mohan S, Oberg KC, Longo LD. Gene expression patterns in the hypoxic murine placenta: a role in epigenesis? Reprod Sci. 2007;14:223–33.PubMedCrossRefGoogle Scholar
  37. 37.
    Hvizdošová-Kleščová A, Uhlík J, Malina M, Vulterinová H, Novotný T, Vajner L. Remodeling of fetoplacental arteries in rats due to chronic hypoxia. Exp Toxicol Pathol. 2013;65:97–103.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhou J, Xiao D, Hu Y, Wang Z, Paradis A, Mata-Greenwood E, et al. Gestational hypoxia induces preeclampsia-like symptoms via heightened endothelin-1 signaling in pregnant rats. Hypertension. 2013;62:599–607.PubMedCrossRefGoogle Scholar
  39. 39.
    Cuffe JS, Walton SL, Singh RR, Spiers JG, Bielefeldt-Ohmann H, Wilkinson L, et al. Mid- to late term hypoxia in the mouse alters placental morphology, glucocorticoid regulatory pathways and nutrient transporters in a sex-specific manner. J Physiol. 2014;592:3127–41.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Jacobs R, Robinson JS, Owens JA, Falconer J, Webster ME. The effect of prolonged hypobaric hypoxia on growth of fetal sheep. J Dev Physiol. 1988;10:97–112.PubMedGoogle Scholar
  41. 41.
    Penninga L, Longo LD. Ovine placentome morphology: effect of high altitude, long-term hypoxia. Placenta. 1998;19:187–93.PubMedCrossRefGoogle Scholar
  42. 42.
    Parraguez VC, Atlagich M, Díaz R, Bruzzone ME, Behn C, Raggi LA. Effect of hypobaric hypoxia on lamb intrauterine growth: comparison between high- and low-altitude native ewes. Reprod Fertil Dev. 2005;17:497–505.PubMedCrossRefGoogle Scholar
  43. 43.
    Baumann MU, Deborde S, Illsley NP. Placental glucose transfer and fetal growth. Endocrine. 2002;19:13–22.PubMedCrossRefGoogle Scholar
  44. 44.
    Illsley NP, Hall S, Penfold P, Stacey TE. Diffusional permeability of the human placenta. Contrib Gynecol Obstet. 1985;13:92–7.PubMedGoogle Scholar
  45. 45.
    Jansson T, Powell TL, Illsley NP. Non-electrolyte solute permeabilities of human placental microvillous and basal membranes. J Physiol. 1993;468:261–74.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Illsley NP. Glucose transporters in the human placenta. Placenta. 2000;21:14–22.PubMedCrossRefGoogle Scholar
  47. 47.
    Xing AY, Challier JC, Lepercq J, Caüzac M, Charron MJ, Girard J, et al. Unexpected expression of glucose transporter 4 in villous stromal cells of human placenta. J Clin Endocrinol Metab. 1998;83:4097–101.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Illsley N, Hall S, Stacey T. The modulation of glucose transfer across the human placenta by intervillous flow rates: an in vitro perfusion study. Troph Res. 1987;2:535–44.Google Scholar
  49. 49.
    Johnson LW, Smith CH. Monosaccharide transport across microvillous membrane of human placenta. Am J Phys. 1980;238:C160–8.CrossRefGoogle Scholar
  50. 50.
    Semenza GL. Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem Pharmacol. 2000;59:47–53.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Hay WW. Regulation of placental metabolism by glucose supply. Reprod Fertil Dev. 1995;7:365–75.PubMedCrossRefGoogle Scholar
  52. 52.
    Piquard F, Schaefer A, Dellenbach P, Haberey P. Lactate movements in the term human placenta in situ. Biol Neonate. 1990;58:61–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Yudilevich DL, Sweiry JH. Transport of amino acids in the placenta. Biochim Biophys Acta. 1985;822:169–201.PubMedCrossRefGoogle Scholar
  54. 54.
    Cetin I, de Santis MS, Taricco E, Radaelli T, Teng C, Ronzoni S, et al. Maternal and fetal amino acid concentrations in normal pregnancies and in pregnancies with gestational diabetes mellitus. Am J Obstet Gynecol. 2005;192:610–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Philipps AF, Holzman IR, Teng C, Battaglia FC. Tissue concentrations of free amino acids in term human placentas. Am J Obstet Gynecol. 1978;131:881–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Cetin I, Fennessey PV, Sparks JW, Meschia G, Battaglia FC. Fetal serine fluxes across fetal liver, hindlimb, and placenta in late gestation. Am J Phys. 1992;263:E786–93.Google Scholar
  57. 57.
    Lewis RM, Glazier J, Greenwood SL, Bennett EJ, Godfrey KM, Jackson AA, et al. L-serine uptake by human placental microvillous membrane vesicles. Placenta. 2007;28:445–52.PubMedCrossRefGoogle Scholar
  58. 58.
    Cleal JK, Lewis RM. The mechanisms and regulation of placental amino acid transport to the human foetus. J Neuroendocrinol. 2008;20:419–26.PubMedCrossRefGoogle Scholar
  59. 59.
    Cetin I. Amino acid interconversions in the fetal-placental unit: the animal model and human studies in vivo. Pediatr Res. 2001;49:148–54.PubMedCrossRefGoogle Scholar
  60. 60.
    Cariappa R, Heath-Monnig E, Smith CH. Isoforms of amino acid transporters in placental syncytiotrophoblast: plasma membrane localization and potential role in maternal/fetal transport. Placenta. 2003;24:713–26.PubMedCrossRefGoogle Scholar
  61. 61.
    Battaglia FC, Regnault TR. Placental transport and metabolism of amino acids. Placenta. 2001;22:145–61.PubMedCrossRefGoogle Scholar
  62. 62.
    Jansson T. Amino acid transporters in the human placenta. Pediatr Res. 2001;49:141–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Kudo Y, Boyd CA. Human placental amino acid transporter genes: expression and function. Reproduction. 2002;124:593–600.PubMedCrossRefGoogle Scholar
  64. 64.
    Regnault TRH, de Vrijer B, Battaglia FC. Transport and metabolism of amino acids in placenta. Endocrine. 2002;19:23–41.PubMedCrossRefGoogle Scholar
  65. 65.
    Chillarón J, Roca R, Valencia A, Zorzano A, Palacín M. Heteromeric amino acid transporters: biochemistry, genetics, and physiology. Am J Physiol Renal Physiol. 2001;281:F995–F1018.PubMedCrossRefGoogle Scholar
  66. 66.
    Wagner CA, Lang F, Bröer S. Function and structure of heterodimeric amino acid transporters. Am J Physiol Cell Physiol. 2001;281:C1077–93.PubMedCrossRefGoogle Scholar
  67. 67.
    Palacín M, Estévez R, Bertran J, Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev. 1998;78:969–1054.PubMedCrossRefGoogle Scholar
  68. 68.
    Haggarty P. Placental regulation of fatty acid delivery and its effect on fetal growth – a review. Placenta. 2002;23(Suppl A):S28–38.PubMedCrossRefGoogle Scholar
  69. 69.
    Dutta-Roy AK. Transport mechanisms for long-chain polyunsaturated fatty acids in the human placenta. Am J Clin Nutr. 2000;71:315S–22S.PubMedCrossRefGoogle Scholar
  70. 70.
    Coleman RA, Haynes EB. Synthesis and release of fatty acids by human trophoblast cells in culture. J Lipid Res. 1987;28:1335–41.PubMedGoogle Scholar
  71. 71.
    Stulc J. Placental transfer of inorganic ions and water. Physiol Rev. 1997;77:805–36.PubMedCrossRefGoogle Scholar
  72. 72.
    Sibley CP, Glazier JD, Greenwood SL, Lacey H, Mynett K, Speake P, et al. Regulation of placental transfer: the Na(+)/H(+) exchanger – a review. Placenta. 2002;23(Suppl A):S39–46.PubMedCrossRefGoogle Scholar
  73. 73.
    Shennan DB, Boyd CA. Ion transport by the placenta: a review of membrane transport systems. Biochim Biophys Acta. 1987;906:437–57.PubMedCrossRefGoogle Scholar
  74. 74.
    McNamara JM, Kay HH. Placental hormones: physiology, disease, and prenatal diagnosis. Placenta. Wiley-Blackwell: Oxford; 2011. p. 57–65.Google Scholar
  75. 75.
    Rabinovici J, Goldsmith PC, Librach CL, Jaffe RB. Localization and regulation of the activin-A dimer in human placental cells. J Clin Endocrinol Metab. 1992;75:571–6.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Petraglia F. Inhibin, activin and follistatin in the human placenta – a new family of regulatory proteins. Placenta. 1997;18:3–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Florio P, Luisi S, Ciarmela P, Severi FM, Bocchi C, Petraglia F. Inhibins and activins in pregnancy. Mol Cell Endocrinol. 2004;180:93–100.CrossRefGoogle Scholar
  78. 78.
    Grammatopoulos DK. Placental corticotrophin-releasing hormone and its receptors in human pregnancy and labour: still a scientific enigma. J Neuroendocrinol. 2008;20:433–8.CrossRefGoogle Scholar
  79. 79.
    Karteris E, Grammatopoulos DK, Randeva HS, Hillhouse EW. The role of corticotropin-releasing hormone receptors in placenta and fetal membranes during human pregnancy. Mol Genet Metab. 2001;72:287–96.PubMedCrossRefGoogle Scholar
  80. 80.
    Florio P, Severi FM, Ciarmela P, Fiore G, Calonaci G, Merola A, et al. Placental stress factors and maternal-fetal adaptive response: the corticotropin-releasing factor family. Endocrine. 2002;19:91–102.PubMedCrossRefGoogle Scholar
  81. 81.
    Muyan M, Boime I. Secretion of chorionic gonadotropin from human trophoblasts. Placenta. 1997;18:237–41.PubMedCrossRefGoogle Scholar
  82. 82.
    Kurtzman JT, Wilson H, Rao CV. A proposed role for hCG in clinical obstetrics. Semin Reprod Med. 2001;19:63–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Lacroix MC, Guibourdenche J, Frendo JL, Muller F, Evain-Brion D. Human placental growth hormone – a review. Placenta. 2002;23(Suppl A):S87–94.PubMedCrossRefGoogle Scholar
  84. 84.
    Freemark M. Regulation of maternal metabolism by pituitary and placental hormones: roles in fetal development and metabolic programming. Horm Res. 2006;65(Supp 6):41–9.PubMedGoogle Scholar
  85. 85.
    Handwerger S, Freemark M. The roles of placental growth hormone and placental lactogen in the regulation of human fetal growth and development. J Pediatr Endocrinol Metab. 2000;13:343–56.PubMedCrossRefGoogle Scholar
  86. 86.
    Riley SC, Leask R, Balfour C, Brennand JE, Groome NP. Production of inhibin forms by the fetal membranes, decidua, placenta and fetus at parturition. Hum Reprod. 2000;15:578–83.PubMedCrossRefGoogle Scholar
  87. 87.
    Reis FM, Florio P, Cobellis L, Luisi S, Severi FM, Bocchi C, et al. Human placenta as a source of neuroendocrine factors. Biol Neonate. 2001;79:150–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Ashworth CJ, Hoggard N, Thomas L, Mercer JG, Wallace JM, Lea RG. Placental leptin. Rev Reprod. 2000;5:18–24.PubMedCrossRefGoogle Scholar
  89. 89.
    Petraglia F, Calza L, Giardino L, Sutton S, Marrama P, Rivier J, et al. Identification of immunoreactive neuropeptide-γ in human placenta: localization, secretion, and binding sites. Endocrinology. 1989;124:2016–22.PubMedCrossRefGoogle Scholar
  90. 90.
    Kaludjerovic J, Ward WE. The interplay between estrogen and fetal adrenal cortex. J Nutr Metab. 2012;2012:837901.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Albrecht ED, Pepe GJ. Estrogen regulation of placental angiogenesis and fetal ovarian development during primate pregnancy. Int J Dev Biol. 2010;54:397–407.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Kallen CB. Steroid hormone synthesis in pregnancy. Obstet Gynecol Clin N Am. 2004;31:795–816.CrossRefGoogle Scholar
  93. 93.
    Shanker YG, Rao AJ. Progesterone receptor expression in the human placenta. Mol Hum Reprod. 1999;5:481–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Iliodromiti Z, Antonakopoulos N, Sifakis S, Tsikouras P, Daniilidis A, Dafopoulos K, et al. Endocrine, paracrine, and autocrine placental mediators in labor. Hormones. 2012;11:397–409.PubMedCrossRefGoogle Scholar
  95. 95.
    Grill S, Rusterholz C, Zanetti-Dällenbach R, Tercanli S, Holzgreve W, Hahn S, et al. Potential markers of preeclampsia – a review. Reprod Biol Endocrinol. 2009;7:70.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Malassiné A, Cronier L. Hormones and human trophoblast differentiation: a review. Endocrine. 2002;19:3–11.PubMedCrossRefGoogle Scholar
  97. 97.
    Corbacho AM, Martínez De La Escalera G, Clapp C. Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J Endocrinol. 2002;173:219–38.PubMedCrossRefGoogle Scholar
  98. 98.
    Gude NM, King RG, Brennecke SP. Autacoid interactions in the regulation of blood flow in the human placenta. Clin Exp Pharmacol Physiol. 1998;25:706–11.PubMedCrossRefGoogle Scholar
  99. 99.
    Fialova L, Malbohan IM. Pregnancy-associated plasma protein A (PAPP-A): theoretical and clinical aspects. Bratisl Lek Listy. 2002;103:194–205.PubMedGoogle Scholar
  100. 100.
    Lawrence JB, Oxvig C, Overgaard MT, Sottrup-Jensen L, Gleich GJ, Hays LG, et al. The insulin-like growth factor (IGF)-dependent IGF binding protein-4 protease secreted by human fibroblasts is pregnancy-associated plasma protein-A. Proc Natl Acad Sci U S A. 1999;96:3149–53.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Sun IYC, Overgaard MT, Oxvig C, Giudice LC. Pregnancy-associated plasma protein A proteolytic activity is associated with the human placental trophoblast cell membrane. J Clin Endocrinol Metab. 2002;87:5235–40.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Fowden AL, Forhead AJ. Endocrine mechanisms of intrauterine programming. Reproduction. 2004;127:515–26.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Fowden AL. The insulin-like growth factors and feto-placental growth. Placenta. 2003;24:803–12.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Fowden AL, Li J, Forhead AJ. Glucocorticoids and the preparation for life after birth: are there long-term consequences of the life insurance? Proc Nutr Soc. 1998;57:113–22.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Gagnon A, Wilson RD, Audibert F, Allen VM, Blight C, Brock JA, et al. Obstetrical complications associated with abnormal maternal serum markers analytes. J Obstet Gynaecol Can. 2008;30:918–49.PubMedCrossRefGoogle Scholar
  106. 106.
    Marin JJ, Macias RI, Serrano MA. The hepatobiliary-like excretory function of the placenta. A review. Placenta. 2003;24:431–8.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Pasanen M. The expression and regulation of drug metabolism in human placenta. Adv Drug Deliv Rev. 1999;38:81–97.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Moffett A, Loke YW. The immunological paradox of pregnancy: a reappraisal. Placenta. 2004;25:1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Arechavaleta-Velasco F, Koi H, Strauss JF 3rd, Parry S. Viral infection of the trophoblast: time to take a serious look at its role in abnormal implantation and placentation? J Reprod Immunol. 2002;55:113–21.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Reynolds LP, Redmer DA. Utero-placental vascular development and placental function. J Anim Sci. 1995;73:1839–51.PubMedCrossRefGoogle Scholar
  111. 111.
    Reynolds LP, Borowicz PP, Vonnahme KA, Johnson ML, Grazul-Bilska AT, Redmer DA, et al. Placental angiogenesis in sheep models of compromised pregnancy. J Physiol. 2005;565:43–58.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Reynolds LP, Borowicz PP, Vonnahme KA, Johnson ML, Grazul-Bilska AT, Wallace JM, et al. Animal models of placental angiogenesis. Placenta. 2005;26:689–708.PubMedCrossRefGoogle Scholar
  113. 113.
    Reynolds LP, Caton JS, Redmer DA, Grazul-Bilska AT, Vonnahme KA, Borowicz PP, et al. Evidence for altered placental blood flow and vascularity in compromised pregnancies. J Physiol. 2006;572:51–8.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Konje JC, Howarth ES, Kaufmann P, Taylor DJ. Longitudinal quantification of uterine artery blood volume flow changes during gestation in pregnancies complicated by intrauterine growth restriction. BJOG. 2003;110:301–5.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Molina RD, Meschia G, Battaglia FC, Hay WW. Gestational maturation of placental glucose transfer capacity in sheep. Am J Phys. 1991;261:R697–704.Google Scholar
  116. 116.
    Thureen PJ, Trembler KA, Meschia G, Makowski EL, Wilkening RB. Placental glucose transport in heat-induced fetal growth retardation. Am J Phys. 1992;263:R578–85.Google Scholar
  117. 117.
    Wallace JM, Bourke DA, Aitken RP, Leitch N, Hay WW. Blood flows and nutrient uptakes in growth-restricted pregnancies induced by overnourishing adolescent sheep. Am J Physiol Regul Integr Comp Physiol. 2002;282:R1027–36.PubMedCrossRefGoogle Scholar
  118. 118.
    Wallace JM, Regnault TR, Limesand SW, Hay WW, Anthony RV. Investigating the causes of low birth weight in contrasting ovine paradigms. J Physiol. 2005;565:19–26.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Charnock-Jones DS, Kaufmann P, Mayhew TM. Aspects of human fetoplacental vasculogenesis and angiogenesis. I. Molecular regulation. Placenta. 2004;25:103–13.PubMedCrossRefGoogle Scholar
  120. 120.
    Kaufmann P, Mayhew TM, Charnock-Jones DS. Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta. 2004;25:114–26.PubMedCrossRefGoogle Scholar
  121. 121.
    Mayhew TM, Charnock-Jones DS, Kaufmann P. Aspects of human fetoplacental vasculogenesis and angiogenesis. III. Changes in complicated pregnancies. Placenta. 2004;25:127–39.PubMedCrossRefGoogle Scholar
  122. 122.
    Huppertz B, Peeters LL. Vascular biology in implantation and placentation. Angiogenesis. 2005;8:157–67.PubMedCrossRefGoogle Scholar
  123. 123.
    Reynolds LP, Redmer DA. Angiogenesis in the placenta. Biol Reprod. 2001;64:1033–40.PubMedCrossRefGoogle Scholar
  124. 124.
    Redmer DA, Aitken RP, Milne JS, Reynolds LP, Wallace JM. Influence of maternal nutrition on messenger RNA expression of placental angiogenic factors and their receptors at midgestation in adolescent sheep. Biol Reprod. 2005;72:1004–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Magness RR, Sullivan JA, Li Y, Phernetton TM, Bird IM. Endothelial vasodilator production by uterine and systemic arteries. VI. Ovarian and pregnancy effects on eNOS and NO(x). Am J Physiol Heart Circ Physiol. 2001;280:H1692–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Itoh H, Bird IM, Nakao K, Magness RR. Pregnancy increases soluble and particulate guanylate cyclases and decreases the clearance receptor of natriuretic peptides in ovine uterine, but not systemic, arteries. Endocrinology. 1998;139:3329–41.PubMedCrossRefGoogle Scholar
  127. 127.
    Vagnoni KE, Shaw CE, Phernetton TM, Meglin BM, Bird IM, Magness RR. Endothelial vasodilator production by uterine and systemic arteries. III. Ovarian and estrogen effects on NO synthase. Am J Phys. 1998;275:H1845–56.Google Scholar
  128. 128.
    Zheng J, Li Y, Weiss AR, Bird IM, Magness RR. Expression of endothelial and inducible nitric oxide synthases and nitric oxide production in ovine placental and uterine tissues during late pregnancy. Placenta. 2000;21:516–24.PubMedCrossRefGoogle Scholar
  129. 129.
    Joyce JM, Phernetton TM, Shaw CE, Modrick ML, Magness RR. Endothelial vasodilator production by uterine and systemic arteries. IX. eNOS gradients in cycling and pregnant ewes. Am J Physiol Heart Circ Physiol. 2002;282:H342–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Vonnahme KA, Wilson ME, Li Y, Rupnow HL, Phernetton TM, Ford SP, et al. Circulating levels of nitric oxide and vascular endothelial growth factor throughout ovine pregnancy. J Physiol. 2005;565:101–9.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Bird IM, Zhang L, Magness RR. Possible mechanisms underlying pregnancy-induced changes in uterine artery endothelial function. Am J Physiol Regul Integr Comp Physiol. 2003;284:R245–58.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Maul H, Longo M, Saade GR, Garfield RE. Nitric oxide and its role during pregnancy: from ovulation to delivery. Curr Pharm Des. 2003;9:359–80.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Wu G, Bazer FW, Cudd TA, Meininger CJ, Spencer TE. Maternal nutrition and fetal development. J Nutr. 2004;134:2169–72.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Williams D. Pregnancy: a stress test for life. Curr Opin Obstet Gynecol. 2003;15:465–71.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Torgersen KL, Curran CA. A systematic approach to the physiologic adaptations of pregnancy. Crit Care Nurs Q. 2006;29:2–19.PubMedCrossRefGoogle Scholar
  136. 136.
    Weissgerber TL, Wolfe LA. Physiological adaptation in early human pregnancy: adaptation to balance maternal-fetal demands. Appl Physiol Nutr Metab. 2006;31:1–11.PubMedCrossRefGoogle Scholar
  137. 137.
    Norwitz ER. Defective implantation and placentation: laying the blueprint for pregnancy complications. Reprod Biomed Online. 2006;13:591–9.PubMedCrossRefGoogle Scholar
  138. 138.
    Joshi D, James A, Quaglia A, Westbrook RH, Heneghan MA. Liver disease in pregnancy. Lancet. 2010;375:594–605.PubMedCrossRefGoogle Scholar
  139. 139.
    Steegers EAP, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet. 2010;376:631–44.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Acharya A, Santos J, Linde B, Anis K. Acute kidney injury in pregnancy-current status. Adv Chronic Kidney Dis. 2013;20:215–22.PubMedCrossRefGoogle Scholar
  141. 141.
    Villar J, Carroli G, Wojdyla D, Abalos E, Giordano D, Ba’aqeel H, et al. Preeclampsia, gestational hypertension and intrauterine growth restriction, related or independent conditions? Am J Obstet Gynecol. 2006;194:921–31.PubMedCrossRefGoogle Scholar
  142. 142.
    Ben-Haroush A, Yogev Y, Hod M. Epidemiology of gestational diabetes mellitus and its association with Type 2 diabetes. Diabet Med. 2004;21:103–13.PubMedCrossRefGoogle Scholar
  143. 143.
    Cuffe JS, Holland O, Salomon C, Rice GE, Perkins AV. Placental derived biomarkers of pregnancy disorders. Placenta. 2017;54:104–10.PubMedCrossRefGoogle Scholar
  144. 144.
    Sattar N, Greer IA. Pregnancy complications and maternal cardiovascular risk: opportunities for intervention and screening? BMJ. 2002;325:157–60.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Irani RA, Xia Y. Renin angiotensin signaling in normal pregnancy and preeclampsia. Semin Nephrol. 2011;31:47–58.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Ha CT, Wu JA, Irmak S, Lisboa FA, Dizon AM, Warren JW, et al. Human pregnancy specific beta-1-glycoprotein 1 (PSG1) has a potential role in placental vascular morphogenesis. Biol Reprod. 2010;83:27–35.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Henson MC, Castracane VD. Leptin in pregnancy: an update. Biol Reprod. 2006;74:218–29.PubMedCrossRefGoogle Scholar
  148. 148.
    Patil M, Panchanadikar TM, Wagh G. Variation of PAPP-A level in the first trimester of pregnancy and its clinical outcome. J Obstet Gynaecol India. 2014;64:116–9.PubMedCrossRefGoogle Scholar
  149. 149.
    Cowans NJ, Spencer K. First-trimester ADAM12 and PAPP-A as markers for intrauterine fetal growth restriction through their roles in the insulin-like growth factor system. Prenat Diagn. 2007;27:264–71.PubMedCrossRefGoogle Scholar
  150. 150.
    Kasimis C, Evangelinakis N, Rotas M, Georgitsi M, Pelekanos N, Kassanos D. Predictive value of biochemical marker ADAM-12 at first trimester of pregnancy for hypertension and intrauterine growth restriction. Clin Exp Obstet Gynecol. 2016;43:43–7.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Muttukrishna S. Role of inhibin in normal and high-risk pregnancy. Semin Reprod Med. 2004;22:227–34.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Barut F, Barut A, Gun BD, Kandemir NO, Harma MI, Harma M, et al. Intrauterine growth restriction and placental angiogenesis. Diagn Pathol. 2010;5:24.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Tandon V, Hiwale S, Amle D, Nagaria T, Patra PK. Assessment of serum vascular endothelial growth factor levels in pregnancy-induced hypertension patients. J Pregnancy. 2017;2017:3179670.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Bredaki FE, Mataliotakis M, Wright A, Wright D, Nicolaides KH. Maternal serum alpha-fetoprotein at 12, 22 and 32 weeks’ gestation in screening for pre-eclampsia. Ultrasound Obstet Gynecol. 2016;47:466–71.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Audibert F, Benchimol Y, Benattar C, Champagne C, Frydman R. Prediction of preeclampsia or intrauterine growth restriction by second trimester serum screening and uterine Doppler velocimetry. Fetal Diagn Ther. 2005;20:48–53.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Rondo PH, Tomkins AM. Folate and intrauterine growth retardation. Ann Trop Paediatr. 2000;20:253–8.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Pandey K, Dubay P, Bhagoliwal A, Gupta N, Tyagi G. Hyperhomocysteinemia as a risk factor for IUGR. J Obstet Gynaecol India. 2012;62:406–8.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Florio P, Luisi S, Ciarmela P, Severi FM, Bocchi C, Petraglia F. Inhibins and activins in pregnancy. Mol Cell Endocrinol. 2004;225:93–100.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Ingec M, Gursoy HG, Yildiz L, Kumtepe Y, Kadanali S. Serum levels of insulin, IGF-1, and IGFBP-1 in pre-eclampsia and eclampsia. Int J Gynaecol Obstet. 2004;84:214–9.PubMedCrossRefGoogle Scholar
  160. 160.
    Laway BA. Pregnancy in acromegaly. Ther Adv Endocrinol Metab. 2015;6:267–72.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Cooley SM, Donnelly JC, Geary MP, Rodeck CH, Hindmarsh PC. Maternal insulin-like growth factors 1 and 2 (IGF-1, IGF-2) and IGF BP-3 and the hypertensive disorders of pregnancy. J Matern Fetal Neonatal Med. 2010;23:658–61.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Collins S, Arulkumaran S, Hayes K, Jackson S, Impey L. Oxford handbook of obstetrics and gynaecology. Oxford: Oxford University Press; 2013.CrossRefGoogle Scholar
  163. 163.
    Goldenberg RL, Cliver SP. Small for gestational age and intrauterine growth restriction: definitions and standards. Clin Obstet Gynecol. 1997;40:704–14.PubMedCrossRefGoogle Scholar
  164. 164.
    Kramer MS, Olivier M, McLean FH, Willis DM, Usher RH. Impact of intrauterine growth retardation and body proportionality on fetal and neonatal outcome. Pediatrics. 1990;86:707–13.PubMedGoogle Scholar
  165. 165.
    Maulik D. Management of fetal growth restriction: an evidence-based approach. Clin Obstet Gynecol. 2006;49:320–34.PubMedCrossRefGoogle Scholar
  166. 166.
    Bamfo JE, Odibo AO. Diagnosis and management of fetal growth restriction. J Pregnancy. 2011;2011:640715.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Hattersley AT, Tooke JE. The fetal insulin hypothesis: an alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet. 1999;353:1789–92.PubMedCrossRefGoogle Scholar
  168. 168.
    Friedman SA, Taylor RN, Roberts JM. Pathophysiology of preeclampsia. Clin Perinatol. 1991;18:661–82.PubMedCrossRefGoogle Scholar
  169. 169.
    Barron WM. The syndrome of preeclampsia. Gastroenterol Clin N Am. 1992;21:851–72.Google Scholar
  170. 170.
    Jeyabalan A. Epidemiology of preeclampsia: impact of obesity. Nutr Rev. 2013;71(Suppl 1):S18–25.PubMedCrossRefGoogle Scholar
  171. 171.
    Roberts JM, Taylor RN, Musci TJ, Rodgers GM, Hubel CA, McLaughlin MK. Preeclampsia: an endothelial cell disorder. Am J Obstet Gynecol. 1989;161:1200–4.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Zhou Y, Damsky CH, Fisher SJ. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J Clin Invest. 1997;99:2152–64.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Irwin JC, Suen LF, Martina NA, Mark SP, Giudice LC. Role of the IGF system in trophoblast invasion and pre-eclampsia. Hum Reprod. 1999;14(Suppl 2):90–6.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Chard T. Insulin-like growth factors and their binding proteins in normal and abnormal human fetal growth. Growth Regul. 1994;4:91–100.PubMedPubMedCentralGoogle Scholar
  175. 175.
    Halhali A, Tovar AR, Torres N, Bourges H, Garabedian M, Larrea F. Preeclampsia is associated with low circulating levels of insulin-like growth factor I and 1,25-dihydroxyvitamin D in maternal and umbilical cord compartments. J Clin Endocrinol Metab. 2000;85:1828–33.PubMedGoogle Scholar
  176. 176.
    Reis FM, D’Antona D, Petraglia F. Predictive value of hormone measurements in maternal and fetal complications of pregnancy. Endocr Rev. 2002;23:230–57.PubMedCrossRefGoogle Scholar
  177. 177.
    Cuckle H. Prenatal screening using maternal markers. J Clin Med. 2014;3:504–20.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Appendix F. Maternal serum marker screening. Understanding genetics: a district of Columbia guide for patients and health professionals. Washington, DC: Genetic Alliance; 2010.Google Scholar
  179. 179.
    Johnson J, Pastuck M, Metcalfe A, Connors G, Krause R, Wilson D, et al. First-trimester Down syndrome screening using additional serum markers with and without nuchal translucency and cell-free DNA. Prenat Diagn. 2013;33:1044–9.PubMedCrossRefGoogle Scholar
  180. 180.
    Krantz D, Hallahan T, Janik D, Carmichael J. Maternal serum screening markers and adverse outcome: a new perspective. J Clin Med. 2014;3:693–712.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Irene Martín-Estal
    • 1
  • Miguel Angel Rodriguez-Zambrano
    • 2
  • Inma Castilla-Cortázar
    • 1
    • 2
  1. 1.Tecnologico de MonterreyEscuela de Medicina y Ciencias de la SaludMonterreyMexico
  2. 2.Fundacion de Investigacion HM HospitalesMadridSpain

Personalised recommendations