Postnatal Prognosis

  • Erich Cosmi
  • Matteo Andolfatto
  • Matteo Arata
  • Marilia Calanducci
  • Silvia Visentin


People with fetal growth restriction (FGR) and a low birth weight possess a more limited nephron mass (in proportion to their body size), a reduced renal volume, and a smaller quantity of glomeruli. From a physiopathological standpoint, FGR due to placental insufficiency is a mainly vascular disorder caused by the chronic vasoconstriction suffered by tertiary villi owing to inadequate trophoblastic invasion of the maternal spiral arteries. The resulting hypoxia affects sodium and potassium channels, and the consequent adaptive response leads to the onset of a chronic vasoconstriction. In the initial stages of this pathological condition, the fetus reacts by reducing its growth rate and increasing its oxygen extraction capacity. In the long term, however, hypoxemia sets in and may persist for weeks, with a subsequent activation of specific chemoreceptors and cardiovascular modifications designed to preserve the delivery of oxygen to the major organs, for example the heart, brain and adrenal glands. Recent ultrasound studies have revealed significant differences in fetuses with FGR based on comparisons with normal fetuses, especially as concerns diastolic function. This cardiac dysfunction would seem to be a constitutive characteristic of growth restriction, which would begin early, remain in a subclinical stage (demonstrated by a normal cardiac output), and then gradually deteriorate. For the time being, however, the exact pathophysiology of hypoxic damage in fetuses with FGR and its influence on the development of the cardiocirculatory system in adults remain the topic of lively scientific debate.


Fetal growth restriction Cardiovascular risk Endothelial damage Doppler Kidney Programming 


  1. 1.
    American College of Obstetricians and Gynecologists. ACOG Practice bulletin no. 134: fetal growth restriction. Obstet Gynecol. 2013;121:1122–33.CrossRefGoogle Scholar
  2. 2.
    Unterscheider J, Daly S, Geary MP, Kennelly MM, McAuliffe FM, O’Donoghue K, et al. Optimizing the definition of intrauterine growth restriction: the multicenter prospective PORTO Study. Am J Obstet Gynecol. 2013;208:290.e1–6.CrossRefGoogle Scholar
  3. 3.
    Gardosi J, Mongelli M, Wilcox M, Chang A. An adjustable fetal weight standard. Ultrasound Obstet Gynecol. 1995;6:168–74.CrossRefGoogle Scholar
  4. 4.
    Royal College of Obstetricians and Gynecologists. The investigation and management of the small-for-gestational-age fetus (guideline no. 31). London: Royal College of Obstetricians and Gynecologists; 2002.Google Scholar
  5. 5.
    Society for Maternal-Fetal Medicine Publications Committee, Berkley E, Chauhan SP, Abuhamad A. Doppler assessment of the fetus with intrauterine growth restriction. Am J Obstet Gynecol. 2012;206:300–8.CrossRefGoogle Scholar
  6. 6.
    Baschat AA, Cosmi E, Bilardo CM, Wolf H, Berg C, Rigano S, et al. Predictors of neonatal outcome in early-onset placental dysfunction. Obstet Gynecol. 2007;109:253–61.CrossRefGoogle Scholar
  7. 7.
    Garg M, Thamotharan M, Dai Y, Lagishetty V, Matveyenko AV, Lee WN, et al. Glucose intolerance and lipid metabolic adaptations in response to intrauterine and postnatal calorie restriction in male adult rats. Endocrinology. 2013;154:102–13.CrossRefGoogle Scholar
  8. 8.
    Al-Ghazali W, Chita SK, Chapman MG, Allan LD. Evidence of redistribution of cardiac output in asymmetrical growth retardation. Br J Obstet Gynaecol. 1989;96:697–704.CrossRefGoogle Scholar
  9. 9.
    Słowakiewicz K, Perenc M, Sieroszewski P. Biochemical prenatal tests and uterine artery Doppler examination in prediction of PIH and IUGR in the third trimester of pregnancy. Ginekol Pol. 2010;81:352–7.PubMedGoogle Scholar
  10. 10.
    Valensise H, Romanini C. Uterine Doppler in the identification of patients at risk for hypertension and IUGR. J Perinat Med. 1994;22(Suppl 1):69–72.CrossRefGoogle Scholar
  11. 11.
    Rizzo G, Capponi A, Cavicchioni O, Vendola M, Arduini D. Low cardiac output to the placenta: an early hemodynamic adaptive mechanism in intrauterine growth restriction. Ultrasound Obstet Gynecol. 2008;32:155–9.CrossRefGoogle Scholar
  12. 12.
    Jang DG, Jo YS, Lee SJ, Kim N, Lee GS. Perinatal outcomes and maternal clinical characteristics in IUGR with absent or reversed end-diastolic flow velocity in the umbilical artery. Arch Gynecol Obstet. 2011;284:73–8.CrossRefGoogle Scholar
  13. 13.
    Picconi JL, Hanif F, Drennan K, Mari G. The transitional phase of ductus venosus reversed flow in severely premature IUGR fetuses. Am J Perinatol. 2008;25:199–203.CrossRefGoogle Scholar
  14. 14.
    Gordijn SJ, Beune IM, Thilaganathan B, Papageorghiou A, Baschat AA, Baker PN, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48:333–9.CrossRefGoogle Scholar
  15. 15.
    White CR, Haidekker M, Bao X, Frangos JA. Temporal gradients in shear, but not spatial gradients, stimulate endothelial cell proliferation. Circulation. 2001;103:2508–13.CrossRefGoogle Scholar
  16. 16.
    McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev. 2005;85:571–633.CrossRefGoogle Scholar
  17. 17.
    Li G, Xiao Y, Estrella JL, Ducsay CA, Gilbert RD, Zhang L. Effect of fetal hypoxia on heart susceptibility to ischemia and reperfusion injury in the adult rat. J Soc Gynecol Investig. 2003;10:265–74.CrossRefGoogle Scholar
  18. 18.
    Resnick N, Yahav H, Shay-Salit A, Shushy M, Schubert S, Zilberman LC, et al. Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol. 2003;81:177–99.CrossRefGoogle Scholar
  19. 19.
    Lelievre-Pegorier M, Vilar J, Ferrier ML, Moreau E, Freund N, Gilbert T, et al. Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int. 1998;54:1455–62.CrossRefGoogle Scholar
  20. 20.
    Brenner BM, Garcia DL, Anderson S. Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens. 1988;1:335–47.CrossRefGoogle Scholar
  21. 21.
    Baum M. Role of the kidney in the prenatal and early postnatal programming of hypertension. Am J Physiol Renal Physiol. 2010;298:F235–47.CrossRefGoogle Scholar
  22. 22.
    Mizuno M, Siddique K, Baum M, Smith S. Prenatal programming of hypertension induces sympathetic over activity in response to physical stress. Hypertension. 2013;61:180–6.CrossRefGoogle Scholar
  23. 23.
    Nilsson PM, Ostergren PO, Nyberg P, Söderström M, Allebeck P. Low birth weight is associated with elevated systolic blood pressure in adolescence: a prospective study of a birth cohort of 149,378 Swedish boys. J Hypertens. 1997;15:1627–31.CrossRefGoogle Scholar
  24. 24.
    Skilton MR, Evans N, Griffiths KA, Harmer JA, Celermajer DS. Aortic wall thickness in newborns with intrauterine growth restriction. Lancet. 2005;365:1484–6.CrossRefGoogle Scholar
  25. 25.
    Cosmi E, Visentin S, Fanelli T, Mautone AJ, Zanardo V. Aortic intima media thickness in fetuses and children with intrauterine growth restriction. Obstet Gynecol. 2009;114:1109–14.CrossRefGoogle Scholar
  26. 26.
    Järvisalo MJ, Jartti L, Näntö-Salonen K, Irjala K, Rönnemaa T, Hartiala JJ, et al. Increased aortic intima-media thickness: a marker of preclinical atherosclerosis in high-risk children. Circulation. 2001;104:2943–7.CrossRefGoogle Scholar
  27. 27.
    Comas M, Crispi F, Cruz-Martinez R, Figueras F, Gratacos E. Tissue Doppler echocardiographic markers of cardiac dysfunction in small-for-gestational age fetuses. Am J Obstet Gynecol. 2011;205:57.e1–6.CrossRefGoogle Scholar
  28. 28.
    Ley D, Stale H, Marsal K. Aortic vessel wall characteristics and blood pressure in children with intrauterine growth retardation and abnormal fetal aortic blood flow. Acta Paediatr. 1997;86:299–305.CrossRefGoogle Scholar
  29. 29.
    Norman M, Martin H. Preterm birth attenuates association between low birth weight and endothelial dysfunction. Circulation. 2003;108:996–1001.CrossRefGoogle Scholar
  30. 30.
    Leeson CP, Whincup PH, Cook DG, Donald AE, Papacosta O, Lucas A, et al. Flow-mediated dilation in 9- to 11-year-old children: the influence of intrauterine and childhood factors. Circulation. 1997;96:2233–8.CrossRefGoogle Scholar
  31. 31.
    Barker DJ. The developmental origins of well-being. Philos Trans R Soc Lond Ser B Biol Sci. 2004;359:1359–66.CrossRefGoogle Scholar
  32. 32.
    Rich-Edwards JW, Kleinman K, Michels KB, Stampfer MJ, Manson JE, Rexrode KM, et al. Longitudinal study of birth weight and adult body mass index in predicting risk of coronary heart disease and stroke in women. BMJ. 2005;330:1115.CrossRefGoogle Scholar
  33. 33.
    Liao D, Arnett DK, Tyroler HA, Riley WA, Chambless LE, Szklo M, et al. Arterial stiffness and the development of hypertension: the ARIC study. Hypertension. 1999;34:201–6.CrossRefGoogle Scholar
  34. 34.
    Koklu E, Kurtoglu S, Akcakus M, Koklu S, Buyukkayhan D, Gumus H, et al. Increased aortic intima-media thickness is related to lipid profile in newborns with intrauterine growth restriction. Horm Res. 2006;65:269–75.PubMedGoogle Scholar
  35. 35.
    Minshall RD, Tiruppathi C, Vogel SM, Malik AB. Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. Histochem Cell Biol. 2002;117:105–12.CrossRefGoogle Scholar
  36. 36.
    Furchgott RF, Zawadzki JV. The obligatory role of the endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–6.CrossRefGoogle Scholar
  37. 37.
    Lo Vasco VR, Salmaso R, Zanardo V, Businaro R, Visentin S, Trevisanuto D, et al. Fetal aorta wall inflammation in ultrasound detected aortic intima/media thickness and growth retardation. J Reprod Immunol. 2011;91:103–7.PubMedGoogle Scholar
  38. 38.
    Meyer WW, Lind J, Yao AC, Kauffman SL. Early arterial lesions in infancy and childhood and ways of prevention. Paediatrician. 1982;11:136–56.PubMedGoogle Scholar
  39. 39.
    Zanardo V, Fanelli T, Weiner G, Fanos V, Zaninotto M, Visentin S, et al. Intrauterine growth restriction is associated with persistent aortic wall thickening and glomerular proteinuria during infancy. Kidney Int. 2011;80:119–23.CrossRefGoogle Scholar
  40. 40.
    Visentin S, Grisan E, Zanardo V, Bertin M, Veronese E, Cavallin F, et al. Developmental programming of cardiovascular risk in intrauterine growth-restricted twin fetuses according to aortic intima thickness. J Ultrasound Med. 2013;32:279–84.CrossRefGoogle Scholar
  41. 41.
    McGill HC Jr, McMahan CA, Herderick EE, Malcom GT, Tracy RE, Strong JP. Origin of atherosclerosis in childhood and adolescence. Am J Clin Nutr. 2000;72:1307S–15S.CrossRefGoogle Scholar
  42. 42.
    Cecconi D, Lonardoni F, Favretto D, Cosmi E, Tucci M, Visentin S, et al. Changes in amniotic fluid and umbilical cord serum proteomic profiles of fetuses with intrauterine growth retardation. Electrophoresis. 2011;32:3630–7.CrossRefGoogle Scholar
  43. 43.
    Favretto D, Cosmi E, Ragazzi E, Visentin S, Tucci M, Fais P, et al. Cord blood metabolomic profiling in intrauterine growth restriction. Anal Bioanal Chem. 2012;402:1109–21.CrossRefGoogle Scholar
  44. 44.
    Cosmi E, Visentin S, Favretto D, Tucci M, Ragazzi E, Viel G, et al. Selective intrauterine growth restriction in monochorionic twin pregnancies: markers of endothelial damage and metabolomic profile. Twin Res Hum Genet. 2013;16:816–26.CrossRefGoogle Scholar
  45. 45.
    Spijkers LJ, van den Akker RF, Janssen BJ, Debets JJ, De Mey JG, Stroes ES, et al. Hypertension is associated with marked alterations in sphingolipid biology: a potential role for ceramide. PLoS One. 2011;6:e21817.CrossRefGoogle Scholar
  46. 46.
    Brenner BM, Lawler EV, Mackenzie HS. The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int. 1996;49:1774–7.CrossRefGoogle Scholar
  47. 47.
    Leunissen RW, Kerkhof GF, Stijnen T, Hokken-Koelega AC. Effect of birth size and catch-up growth on adult blood pressure and carotid intima-media thickness. Horm Res Paediatr. 2012;77:394–401.CrossRefGoogle Scholar
  48. 48.
    Uiterwaal CS, Anthony S, Launer LJ, Witteman JC, Trouwborst AM, Hofman A, et al. Birth weight, growth, and blood pressure: an annual follow-up study of children aged 5 through 21 years. Hypertension. 1997;30:267–71.CrossRefGoogle Scholar
  49. 49.
    Adair LS, Cole TJ. Rapid child growth raises blood pressure in adolescent boys who were thin at birth. Hypertension. 2003;41:451–6.CrossRefGoogle Scholar
  50. 50.
    Huxley R, Neil A, Collins R. Unravelling the fetal origins hypothesis: is there really an inverse association between birth weight and subsequent blood pressure? Lancet. 2002;360:659–65.CrossRefGoogle Scholar
  51. 51.
    Oren A, Vos LE, Uiterwaal CS, Gorissen WH, Grobbee DE, Bots ML. Birth weight and carotid intima-media thickness: new perspectives from the atherosclerosis risk in young adults (ARYA) study. Ann Epidemiol. 2004;14:8–16.CrossRefGoogle Scholar
  52. 52.
    Santos MS, Joles JA. Early determinants of cardiovascular disease. Best Pract Res Clin Endocrinol Metab. 2012;26:581–97.CrossRefGoogle Scholar
  53. 53.
    Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311:171–4.CrossRefGoogle Scholar
  54. 54.
    Tintu A, Rouwet E, Verlohren S, Brinkmann J, Ahmad S, Crispi F, et al. Hypoxia induces dilated ardiomyopathy in the chick embryo: mechanism, intervention, and long-term consequences. PLoS One. 2009;4:e5155.CrossRefGoogle Scholar
  55. 55.
    Skilton MR, Mikkila V, Wurtz P, Ala-Korpela M, Sim KA, Soininen P, et al. Fetal growth, omega-3 (ω-3) fatty acids, and progression of subclinical atherosclerosis: preventing fetal origins of disease? The Cardiovascular Risk in Young Finns Study. Am J Clin Nutr. 2013;97:58–65.CrossRefGoogle Scholar
  56. 56.
    Williams CL, Hayman LL, Daniels SR, Robinson TN, Steinberger J, Paridon S, et al. Cardiovascular health in childhood: a statement for health professionals from the Committee on Atherosclerosis, Hypertension, and Obesity in the Young (AHOY) of the Council on Cardiovascular Disease in the Young, American Heart Association. Circulation. 2002;106:143–60.CrossRefGoogle Scholar
  57. 57.
    Skilton MR, Raitakari OT, Celermajer DS. High intake of dietary long-chain ω-3 fatty acids is associated with lower blood pressure in children born with low birth weight: NHANES 2003–2008. Hypertension. 2013;61:972–6.CrossRefGoogle Scholar
  58. 58.
    Skilton MR, Mikkila V, Wurtz P, Ala-Korpela M, Sim KA, Soininen P, et al. Fetal growth, omega-3 (ω-3) fatty acids, and progression of subclinicalatherosclerosis: preventing fetal origins of disease? The Cardiovascular Risk in Young Finns Study. Am J Clin Nutr. 2013;97:58–65.CrossRefGoogle Scholar
  59. 59.
    Skilton MR, Ayer JG, Harmer JA, Webb K, Leeder SR, Marks GB, et al. Impaired fetal growth and arterial wall thickening: a randomized trial of ω-3 supplementation. Pediatrics. 2012;129:e698–703.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Erich Cosmi
    • 1
    • 2
  • Matteo Andolfatto
    • 2
  • Matteo Arata
    • 2
  • Marilia Calanducci
    • 2
  • Silvia Visentin
    • 2
  1. 1.University of Padua School of MedicineDeparment of Woman and Child HealthPaduaItaly
  2. 2.Department of Woman and Child HealthMaternal Fetal Medicine Unit, University of PaduaPaduaItaly

Personalised recommendations