Advertisement

START UP RESEARCH 2017: Studies in Neural Data Science pp 111-130 | Cite as

Hierarchical Spatio-Temporal Modeling of Resting State fMRI Data

  • Alessia Caponera
  • Francesco Denti
  • Tommaso Rigon
  • Andrea Sottosanti
  • Alan Gelfand
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 257)

Abstract

In recent years, state of the art brain imaging techniques like Functional Magnetic Resonance Imaging (fMRI), have raised new challenges to the statistical community, which is asked to provide new frameworks for modeling and data analysis. Here, motivated by resting state fMRI data, which can be seen as a collection of spatially dependent functional observations among brain regions, we propose a parsimonious but flexible representation of their dependence structure leveraging a Bayesian time-dependent latent factor model. Adopting an assumption of separability of the covariance structure in space and time, we are able to substantially reduce the computational cost and, at the same time, provide interpretable results. Theoretical properties of the model along with identifiability conditions are discussed. For model fitting, we propose a mcmc algorithm to enable posterior inference. We illustrate our work through an application to a dataset coming from the enkirs project, discussing the estimated covariance structure and also performing model selection along with network analysis. Our modeling is preliminary but offers ideas for developing fully Bayesian fMRI models, incorporating a plausible space and time dependence structure.

Keywords

Bayesian factor analysis Gaussian processes Low-rank factorizations Separable models 

Notes

Acknowledgements

We are grateful to Greg Kiar and Eric Bridgeford from NeuroData at Johns Hopkins University, who graciously pre-processed the raw DTI and R-fMRI imaging data available at http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html, using the pipelines ndmg and c-pac. The authors are also thankful to the organizers of StartUp Research for coordinating such a stimulating event.

Supplementary material

References

  1. 1.
    Biswal, B., Yetkin, F.Z., V.M., H., Hyde, J.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34(4), 537–541 (1995).  https://doi.org/10.1002/mrm.1910340409CrossRefGoogle Scholar
  2. 2.
    Lee, M.H., Smyser, C.D., Shimony, J.S.: Resting state fMRI: a review of methods and clinical applications. Am. J. Neuroradiol. 34(10), 1866–1872 (2013).  https://doi.org/10.3174/ajnr.A3263CrossRefGoogle Scholar
  3. 3.
    Poldrack, R.A., Mumford, J.A., Nichols, T.E.: Handbook of Functional MRI Data Analysis. Cambridge University Press, Cambridge (2011)Google Scholar
  4. 4.
    Smitha, K., Akhil Raja, K., Arun, K., Rajesh, P., Thomas, B., Kapilamoorthy, T., Kesavadas, C.: Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks. Neuroradiol. J. 30(4), 305–317 (2017).  https://doi.org/10.1177/1971400917697342CrossRefGoogle Scholar
  5. 5.
    Bowman, F.D., Caffo, B., Bassett, S.S., Kilts, C.: A Bayesian hierarchical framework for spatial modeling of fMRI data. NeuroImage 39 (2008).  https://doi.org/10.1016/j.neuroimage.2007.08.012CrossRefGoogle Scholar
  6. 6.
    Hartvig, N.G.: A stochastic geometry model for functional magnetic resonance images. Scand. J. Stat. 29(3), 333–353 (2002).  https://doi.org/10.1111/1467-9469.00294MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Quirós, A., Diez, R.M., Gamerman, D.: Bayesian spatiotemporal model of fMRI data. NeuroImage 49(1), 442–456 (2010).  https://doi.org/10.1016/j.neuroimage.2009.07.047CrossRefGoogle Scholar
  8. 8.
    Stephan, K.E., Kasper, L., Harrison, L.M., Daunizeau, J., den Ouden, H.E., Breakspear, M., Friston, K.J.: Nonlinear dynamic causal models for fMRI. NeuroImage 42(2), 649–662 (2008).  https://doi.org/10.1016/j.neuroimage.2008.04.262CrossRefGoogle Scholar
  9. 9.
    Zhang, L., Guindani, M., Versace, F., Engelmann, J.M., Vannucci, M.: A spatiotemporal nonparametric Bayesian model of multi-subject fMRI data. Ann. Appl. Stat. 10(2), 638–666 (2016).  https://doi.org/10.1214/16-AOAS926MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Zhang, L., Guindani, M., Versace, F., Vannucci, M.: A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses. NeuroImage 95, 162–175 (2014).  https://doi.org/10.1016/j.neuroimage.2014.03.024CrossRefGoogle Scholar
  11. 11.
    Woolrich, M.W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., Beckmann, C., Jenkinson, M., Smith, S.M.: Bayesian analysis of neuroimaging data in FSL. NeuroImage 45 (2009).  https://doi.org/10.1016/j.neuroimage.2008.10.055CrossRefGoogle Scholar
  12. 12.
    Zhang, L., Guindani, M., Vannucci, M.: Bayesian models for functional magnetic resonance imaging data analysis. Comput. Stat. 7(1), 21–41 (2015).  https://doi.org/10.1002/wics.1339. Wiley Interdisciplinary ReviewsMathSciNetCrossRefGoogle Scholar
  13. 13.
    Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.P., Frith, C.D., Frackowiak, R.S.J.: Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2(4), 189–210 (1994).  https://doi.org/10.1002/hbm.460020402CrossRefGoogle Scholar
  14. 14.
    Craddock, R.C., Jbabdi, S., Yan, C., Vogelstein, J.T., Castellanos, F.X., Di Martino, A., Kelly, C., Heberlein, K., Colcombe, S., Milham, M.P.: Imaging human connectomes at the macroscale. Nat. Methods 6, 524–539 (2013).  https://doi.org/10.1038/nmeth.2482CrossRefGoogle Scholar
  15. 15.
    Erhardt, E.B., Allen, E.A., Wei, Y., Eichele, T., Calhoun, V.D.: Simtb, a simulation toolbox for fmri data under a model of spatiotemporal separability. NeuroImage 59(4), 4160–4167 (2012).  https://doi.org/10.1016/j.neuroimage.2011.11.088CrossRefGoogle Scholar
  16. 16.
    Desikan, R.S., Segonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980 (2006).  https://doi.org/10.1016/j.neuroimage.2006.01.021CrossRefGoogle Scholar
  17. 17.
    Cressie, N., Wikle, C.K.: Statistics for Spatio-Temporal Data. Wiley, New York (2011)Google Scholar
  18. 18.
    Banerjee, S., Carlin, B.P., Gelfand, A.E.: Hierarchical Modeling and Analysis for Spatial Data, 2nd edn. CRC Press, Boca Raton (2014)Google Scholar
  19. 19.
    Quick, H., Banerjee, S., Carlin, B.P.: Modeling temporal gradients in regionally aggregated California asthma hospitalization data. Ann. Appl. Stat. 7(1), 154–176 (2013).  https://doi.org/10.1214/12-AOAS600MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ramsay, J., Silverman, B.W.: Functional Data Analysis. Springer, New York (2005)Google Scholar
  21. 21.
    Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).  https://doi.org/10.1038/nrn2575CrossRefGoogle Scholar
  22. 22.
    van den Heuvel, M., Stam, C.J., Boersma, M., Hulshoff Pol, H.E.: Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. NeuroImage 43, 528–539 (2008).  https://doi.org/10.1016/j.neuroimage.2008.08.010CrossRefGoogle Scholar
  23. 23.
    Alexander-Bloch, A.F., Vértes, P., Stidd, R., Lalonde, F., Clasen, L., Rapoport, J., Giedd, J., Bullmore, E.T., Gogtay, N.: The anatomical distance of functional connections predicts brain network topology in health and schizophrenia. Cereb. Cortex 23(1), 127–138 (2013).  https://doi.org/10.1093/cercor/bhr388CrossRefGoogle Scholar
  24. 24.
    Salvador, R., Suckling, J., Coleman, M., Pickard, J., Menon, D., Bullmore, E.: Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 15, 1332–1342 (2005).  https://doi.org/10.1093/cercor/bhi016CrossRefGoogle Scholar
  25. 25.
    Durante, D., Scarpa, B., Dunson, D.B.: Locally adaptive factor processes for multivariate time series. J. Mach. Learn. Res. 15, 1493–1522 (2014). http://jmlr.org/papers/v15/durante14a.html
  26. 26.
    Fox, E., Dunson, D.: Bayesian nonparametric covariance regression. J. Mach. Learn. Res. 16, 2501–2542 (2015). http://jmlr.org/papers/v16/fox15a.html
  27. 27.
    Prado, R., West, M.: Time Series. Modeling, Computation and Inference. CRC Press (2010)Google Scholar
  28. 28.
    Carvalho, C.M., Chang, J., Lucas, J.E., Nevins, J.R., Wang, Q., West, M.: High-dimensional sparse factor modeling: applications in gene expression genomics. J. Am. Stat. Assoc. 103(484), 1438–1456 (2008).  https://doi.org/10.1198/016214508000000869MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    West, M.: Bayesian factor regression models in the large p, small n paradigm. In: J. Bernardo, M.J. Bayarri, J.O. Berger, A.P. Dawid, D. Heckerman, A.F.M. Smith, M. West (eds.) Bayesian Statistics, vol. 7, pp. 733–742. Oxford University Press (2003)Google Scholar
  30. 30.
    Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press (2006)Google Scholar
  31. 31.
    Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D.: Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24, 663–676 (2014).  https://doi.org/10.1093/cercor/bhs352CrossRefGoogle Scholar
  32. 32.
    Dawid, A.P.: Some matrix-variate distribution theory: notational considerations and a Bayesian application. Biometrika 68(1), 265–274 (1981).  https://doi.org/10.2307/2335827MathSciNetCrossRefGoogle Scholar
  33. 33.
    Papp, T.K.: klin: Linear Equations with Kronecker Structure R package version 2007-02-05 (2012). https://CRAN.R-project.org/package=klin.
  34. 34.
    Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis, 3rd edn. CRC Press (2014)Google Scholar
  35. 35.
    Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Van Der Linde, A.: Bayesian measures of model complexity and fit. J. R. Stat. Society. Ser. B: Stat. Methodol.64(4), 583–616 (2002). 10.1111/1467-9868.00353MathSciNetCrossRefGoogle Scholar
  36. 36.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001).  https://doi.org/10.1023/A:1010933404324CrossRefzbMATHGoogle Scholar
  37. 37.
    Kolaczyk, E.D.: Statistical Analysis of Network Data. Springer, New York (2009).  https://doi.org/10.1007/978-0-387-88146-1CrossRefGoogle Scholar
  38. 38.
    Ghosh, J., Dunson, D.B.: Default prior distributions and efficient posterior computation in Bayesian factor analysis. J. Comput. Graph. Stat. 18(2), 306–320 (2009).  https://doi.org/10.1198/jcgs.2009.07145MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Alessia Caponera
    • 1
  • Francesco Denti
    • 2
  • Tommaso Rigon
    • 3
  • Andrea Sottosanti
    • 4
  • Alan Gelfand
    • 5
  1. 1.Department of Statistical SciencesSapienza University of RomeRomeItaly
  2. 2.Department of Statistics and Quantitative MethodsUniversity of Milano-BicoccaMilanItaly
  3. 3.Department of Decision SciencesBocconi UniversityMilanItaly
  4. 4.Department of Statistical SciencesUniversity of PadovaPaduaItaly
  5. 5.Department of Statistical ScienceDuke UniversityDurhamUSA

Personalised recommendations