Forming Tile Shapes with Simple Robots

  • Robert Gmyr
  • Kristian HinnenthalEmail author
  • Irina Kostitsyna
  • Fabian Kuhn
  • Dorian Rudolph
  • Christian Scheideler
  • Thim Strothmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11145)


Motivated by the problem of manipulating nanoscale materials, we investigate the problem of reconfiguring a set of tiles into certain shapes by robots with limited computational capabilities. As a first step towards developing a general framework for these problems, we consider the problem of rearranging a connected set of hexagonal tiles by a single deterministic finite automaton. After investigating some limitations of a single-robot system, we show that a feasible approach to build a particular shape is to first rearrange the tiles into an intermediate structure by performing very simple tile movements. We introduce three types of such intermediate structures, each having certain advantages and disadvantages. Each of these structures can be built in asymptotically optimal \(O(n^2)\) rounds, where n is the number of tiles. As a proof of concept, we give an algorithm for reconfiguring a set of tiles into an equilateral triangle through one of the intermediate structures. Finally, we experimentally show that the algorithm for building the simplest of the three intermediate structures can be modified to be executed by multiple robots in a distributed manner, achieving an almost linear speedup in the case where the number of robots is reasonably small.


Finite automata Reconfiguration Tiles Shape formation 


  1. 1.
    Bonato, A., Nowakowski, R.J.: The game of cops and robbers on graphs. AMS (2011)Google Scholar
  2. 2.
    Chirikjian, G., Pamecha, A., Ebert-Uphoff, I.: Evaluating efficiency of self-reconfiguration in a class of modular robots. J. Robot. Syst. 13(5), 317–338 (1996)CrossRefGoogle Scholar
  3. 3.
    Das, S.: Mobile agents in distributed computing: network exploration. Bull. Eur. Assoc. Theor. Comput. Sci. 109, 54–69 (2013)zbMATHGoogle Scholar
  4. 4.
    Demaine, E., Tachi, T.: Origamizer: a practical algorithm for folding any polyhedron. In: Proceedings of 33rd International Symposium on Computational Geometry (SoCG), pp. 34:1–34:16 (2017)Google Scholar
  5. 5.
    Demaine, E.D., Fekete, S.P., Scheffer, C., Schmidt, A.: New geometric algorithms for fully connected staged self-assembly. Theor. Comput. Sci. 671, 4–18 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Demaine, E., Demaine, M., Hoffmann, M., O’Rourke, J.: Pushing blocks is hard. Comput. Geom. 26(1), 21–36 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Universal shape formation for programmable matter. In: Proceedings of 28th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 289–299 (2016)Google Scholar
  8. 8.
    Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theor. Comput. Sci. 399(3), 236–245 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hurtado, F., Molina, E., Ramaswami, S., Sacristán, V.: Distributed reconfiguraiton of 2D lattice-based modular robotic systems. Auton. Rob. 38(4), 383–413 (2015)CrossRefGoogle Scholar
  10. 10.
    Lund, K., et al.: Molecular robots guided by prescriptive landscapes. Nature 465(7295), 206–210 (2010)CrossRefGoogle Scholar
  11. 11.
    Michail, O., Spirakis, P.G.: Simple and efficient local codes for distributed stable network construction. Distrib. Comput. 29(3), 207–237 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Murata, S., Kurokawa, H., Kokaji, S.: Self-assembling machine. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp . 441–448 (1994)Google Scholar
  13. 13.
    Omabegho, T., Sha, R., Seeman, N.: A bipedal DNA Brownian motor with coordinated legs. Science 324(5923), 67–71 (2009)CrossRefGoogle Scholar
  14. 14.
    Patitz, M.J.: An introduction to tile-based self-assembly and a survey of recent results. Nat. Comput. 13(2), 195–224 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pelc, A.: Deterministic rendezvous in networks: a comprehensive survey. Networks 59(3), 331–347 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Reif, J.H., Sahu, S.: Autonomous programmable DNA nanorobotic devices using DNAzymes. Theor. Comput. Sci. 410, 1428–1439 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rothemund, P., Winfree, E.: The program-size complexity of self-assembled squares. In: Proceedings of 32nd Annual ACM Symposium on Theory of Computing (STOC), pp. 459–468 (2000)Google Scholar
  18. 18.
    Shin, J., Pierce, N.: A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 4903–4911 (2004)Google Scholar
  19. 19.
    Terada, Y., Murata, S.: Automatic modular assembly system and its distributed control. Int. J. Robot. Res. 27(3–4), 445–462 (2008)CrossRefGoogle Scholar
  20. 20.
    Thubagere, A.: A cargo-sorting DNA robot. Science 357(6356), eaan6558 (2017)CrossRefGoogle Scholar
  21. 21.
    Tomita, K., Murata, S., Kurokawa, H., Yoshida, E., Kokaji, S.: Self-assembly and self-repair method for a distributed mechanical system. IEEE Trans. Robot. Autom. 15(6), 1035–1045 (1999)CrossRefGoogle Scholar
  22. 22.
    Wang, Z., Elbaz, J., Willner, I.: A dynamically programmed DNA transporter. Angewandte Chemie Int. Ed. 51(48), 4322–4326 (2012)CrossRefGoogle Scholar
  23. 23.
    Wickham, S., Bath, J., Katsuda, Y., Endo, M., Hidaka, K., Sugiyama, H., Turberfield, A.: A DNA-based molecular motor that can navigate a network of tracks. Nat. Nanotechnol. 7(3), 169–173 (2012)CrossRefGoogle Scholar
  24. 24.
    Woods, D., Chen, H., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: Proceedings of 4th Conference of Innovations in Theoretical Computer Science (ITCS), pp. 353–354 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Robert Gmyr
    • 1
  • Kristian Hinnenthal
    • 2
    Email author
  • Irina Kostitsyna
    • 3
  • Fabian Kuhn
    • 4
  • Dorian Rudolph
    • 2
  • Christian Scheideler
    • 2
  • Thim Strothmann
    • 2
  1. 1.University of HoustonHoustonUSA
  2. 2.Paderborn UniversityPaderbornGermany
  3. 3.TU EindhovenEindhovenThe Netherlands
  4. 4.University of FreiburgFreiburg im BreisgauGermany

Personalised recommendations