Temporal DNA Barcodes: A Time-Based Approach for Single-Molecule Imaging

  • Shalin ShahEmail author
  • John Reif
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11145)


In the past decade, single-molecule imaging has opened new opportunities to understand reaction kinetics of molecular systems. DNA-PAINT uses transient binding of DNA strands to perform super-resolution fluorescence imaging. An interesting challenge in DNA nanoscience and related fields is the unique identification of single-molecules. While wavelength multiplexing (using fluorescent dyes of different colors) can be used to increase the number of distinguishable targets, the resultant total number of targets is still limited by the number of dyes with non-overlapping spectra. In this work, we introduce the use of time-domain to develop a DNA-based reporting framework for unique identification of single-molecules. These fluorescent DNA devices undergo a series of conformational transformations that result in (unique) time-changing intensity signals. We define this stochastic temporal intensity trace as the device’s temporal barcode since it can uniquely identify the corresponding DNA device if the collection time is long enough. Our barcodes work with as few as one dye making them easy to design, extremely low-cost, and greatly simplifying the hardware setup. In addition, by adding multiple dyes, we can create a much larger family of uniquely identifiable reporter molecules. Finally, our devices are designed to follow the principle of transient binding and can be imaged using total internal reflection fluorescence (TIRF) microscopes so they are not susceptible to photo-bleaching, allowing us to monitor their activity for extended time periods. We model our devices using continuous-time Markov chains (CTMCs) and simulate their behavior using a stochastic simulation algorithm (SSA). These temporal barcodes are later analyzed and classified in their parameter space. The results obtained from our simulation experiments can provide crucial insights for collecting experimental data.


Molecular reporters DNA nanodevices Temporal reporters TIRF Transient binding DNA hairpins Single-molecule imaging 


  1. 1.
    Braeckmans, K., De Smedt, S.C., Roelant, C., Leblans, M., Pauwels, R., Demeester, J.: Encoding microcarriers by spatial selective photobleaching. Nat. Mater. 2(3), 169 (2003)CrossRefGoogle Scholar
  2. 2.
    Bui, H., Shah, S., Mokhtar, R., Song, T., Garg, S., Reif, J.: Localized DNA hybridization chain reactions on DNA origami. ACS Nano 12(2), 1146–1155 (2018)CrossRefGoogle Scholar
  3. 3.
    Chatterjee, G., Dalchau, N., Muscat, R.A., Phillips, A., Seelig, G.: A spatially localized architecture for fast and modular DNA computing. Nat. Nanotechnol. 12(9), 920 (2017)CrossRefGoogle Scholar
  4. 4.
    Dejneka, M.J., et al.: Rare earth-doped glass microbarcodes. Proc. Natl. Acad. Sci. 100(2), 389–393 (2003)CrossRefGoogle Scholar
  5. 5.
    Douglas, S.M., Bachelet, I., Church, G.M.: A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070), 831–834 (2012)CrossRefGoogle Scholar
  6. 6.
    Eshra, A., Shah, S., Reif, J.: DNA hairpin gate: a renewable dna seesaw motif using hairpins. arXiv preprint arXiv:1704.06371 (2017)
  7. 7.
    Fu, D., Shah, S., Song, T., Reif, J.: DNA-based analog computing. In: Braman, J.C. (ed.) Synthetic Biology. MMB, vol. 1772, pp. 411–417. Springer, New York (2018). Scholar
  8. 8.
    Garg, S., Shah, S., Bui, H., Song, T., Mokhtar, R., Reif, J.: Small 14, 1801470 (2018). Scholar
  9. 9.
    Geiss, G.K., et al.: Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 26(3), 317 (2008)CrossRefGoogle Scholar
  10. 10.
    Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55 (2007)CrossRefGoogle Scholar
  11. 11.
    Gudiksen, M.S., Lauhon, L.J., Wang, J., Smith, D.C., Lieber, C.M.: Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415(6872), 617 (2002)CrossRefGoogle Scholar
  12. 12.
    Johnson-Buck, A., Shih, W.M.: Single-molecule clocks controlled by serial chemical reactions. Nano Lett. 17(12), 7940–7944 (2017)CrossRefGoogle Scholar
  13. 13.
    Joshi, A., Kaur, R.: A review: comparative study of various clustering techniques in data mining. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(3), 55–57 (2013)Google Scholar
  14. 14.
    Jungmann, R., Avendaño, M.S., Woehrstein, J.B., Dai, M., Shih, W.M., Yin, P.: Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and exchange-PAINT. Nat. Methods 11(3), 313 (2014)CrossRefGoogle Scholar
  15. 15.
    Jungmann, R., Steinhauer, C., Scheible, M., Kuzyk, A., Tinnefeld, P., Simmel, F.C.: Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 10(11), 4756–4761 (2010)CrossRefGoogle Scholar
  16. 16.
    Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-assembled from DNA bricks. Science 338(6111), 1177–1183 (2012)CrossRefGoogle Scholar
  17. 17.
    Lakin, M.R., Petersen, R., Gray, K.E., Phillips, A.: Abstract modelling of tethered DNA circuits. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 132–147. Springer, Cham (2014). Scholar
  18. 18.
    Levsky, J.M., Shenoy, S.M., Pezo, R.C., Singer, R.H.: Single-cell gene expression profiling. Science 297(5582), 836–840 (2002)CrossRefGoogle Scholar
  19. 19.
    Li, Y., Cu, Y.T.H., Luo, D.: Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat. Biotechnol. 23(7), 885 (2005)CrossRefGoogle Scholar
  20. 20.
    Lin, C., et al.: Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. Nat. Chem. 4(10), 832 (2012)CrossRefGoogle Scholar
  21. 21.
    Lin, C., Liu, Y., Yan, H.: Self-assembled combinatorial encoding nanoarrays for multiplexed biosensing. Nano Lett. 7(2), 507–512 (2007)CrossRefGoogle Scholar
  22. 22.
    Lu, Y., et al.: Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photon. 8(1), 32 (2014)CrossRefGoogle Scholar
  23. 23.
    Nicewarner-Pena, S.R., et al.: Submicrometer metallic barcodes. Science 294(5540), 137–141 (2001)CrossRefGoogle Scholar
  24. 24.
    Pregibon, D.C., Toner, M., Doyle, P.S.: Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315(5817), 1393–1396 (2007)CrossRefGoogle Scholar
  25. 25.
    Qian, L., Winfree, E.: Scaling up digital circuit computation with dna strand displacement cascades. Science 332(6034), 1196–1201 (2011)CrossRefGoogle Scholar
  26. 26.
    Sahu, S., LaBean, T.H., Reif, J.H.: A DNA nanotransport device powered by polymerase \(\phi \)29. Nano Lett. 8(11), 3870–3878 (2008)CrossRefGoogle Scholar
  27. 27.
    Schmied, J.J., et al.: DNA origami-based standards for quantitative fluorescence microscopy. Nat. Protoc. 9(6), 1367 (2014)CrossRefGoogle Scholar
  28. 28.
    Schnitzbauer, J., Strauss, M.T., Schlichthaerle, T., Schueder, F., Jungmann, R.: Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12(6), 1198 (2017)CrossRefGoogle Scholar
  29. 29.
    Seeman, N.C.: Structural DNA nanotechnology. In: Rosenthal, S.J., Wright, D.W. (eds.) NanoBiotechnology Protocols, pp. 143–166. Springer, Heidelberg (2005). Scholar
  30. 30.
    Shah, S., Dave, P., Gupta, M.K.: Computing real numbers using DNA self-assembly. arXiv preprint arXiv:1502.05552 (2015)
  31. 31.
    Shah, S., Limbachiya, D., Gupta, M.K.: DNACloud: A potential tool for storing big data on DNA. arXiv preprint arXiv:1310.6992 (2013)
  32. 32.
    Shang, L., et al.: Photonic crystal microbubbles as suspension barcodes. J. Am. Chem. Soc. 137(49), 15533–15539 (2015)CrossRefGoogle Scholar
  33. 33.
    Song, T., Garg, S., Mokhtar, R., Bui, H., Reif, J.: Design and analysis of compact DNA strand displacement circuits for analog computation using autocatalytic amplifiers. ACS Synt. Biol. 7(1), 46–53 (2017)CrossRefGoogle Scholar
  34. 34.
    Trivedi, K.S.: Probability & Statistics with Reliability Queuing and Computer Science Applications. Wiley, Hoboken (2008)zbMATHGoogle Scholar
  35. 35.
    Tsukanov, R., et al.: Detailed study of DNA hairpin dynamics using single-molecule fluorescence assisted by DNA origami. J. Phys. Chem. B 117(40), 11932–11942 (2013)CrossRefGoogle Scholar
  36. 36.
    Zhang, Y., et al.: Multicolor barcoding in a single upconversion crystal. J. Am. Chem. Soc. 136(13), 4893–4896 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringDuke UniversityDurhamUSA
  2. 2.Department of Computer ScienceDuke UniversityDurhamUSA

Personalised recommendations