Advertisement

Research on Image Classification of Marine Pollutants with Convolution Neural Network

  • Tingting Yang
  • Shuwen Jia
  • Huanhuan ZhangEmail author
  • Mingquan Zhou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11068)

Abstract

The good marine ecological environment is the basis for the sustainable development and utilization of marine resources. However, humans have also severely damaged the marine environment while utilizing marine resources. Therefore, image classification for marine pollution is beneficial to the protection and development of the ocean. In recent years, with the rise of convolution neural networks, this algorithm is rarely used in the classification of marine pollutants. This paper will apply the design of 6-layer convolution neural network to image classification of marine pollution (called for short MP-net). Experiments show that Alex net, VGG(11) and MP-net are learning and training in the same data set, and the accuracy rates respectively are 89.17%, 86.25%, and 90.14%. Therefore, in the image classification of marine pollutants using convolution neural networks, the network can adapt to image scenes, automatically learn features, and have good classification results.

Keywords

Image classification Marine pollution CNN 

Notes

Acknowledgement

This work is supported by Hainan Provincial Natural Science Foundation of China (project number: 20166235), Hainan provincial university scientific research funding project (project number: Hnky2017-57).

References

  1. 1.
    Clark, R.B.: Marine Pollution, 5th edn. Oxford University Press, Oxford (2002)Google Scholar
  2. 2.
    Fukushima, K., Miyake, S., Ito, T.: Neocognitron: a neural network model for a mechanism of visual pattern recognition. IEEE Trans. Syst. Man Cybern. SMC 13(5), 826–834 (1983)CrossRefGoogle Scholar
  3. 3.
    Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Le Cun, Y., Boser, B., Denker, J.S., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)CrossRefGoogle Scholar
  5. 5.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  6. 6.
    Hinton, G.E., Srivastava, N., Krizhevsky, A., et al.: Improving neural networks by preventing co- adaptation of feature detectors. Comput. Sci. 3(4), 212–223 (2012)Google Scholar
  7. 7.
    Le Cun, Y., Huang, F.J., Bottou, L.: Learning methods for generic object recognition with invariance to pose and lighting. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004) (2004)Google Scholar
  8. 8.
    Girshick, R., Donahue, J., Darrell, T., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition, pp. 580–587 (2014)Google Scholar
  9. 9.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of ICLR 2015 (2015)Google Scholar
  10. 10.
    Mensink, T., Verbeek, J., Perronnin, F., Csurka, G.: Metric learning for large scale image classification: generalizing to new classes at near-zero cost. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, pp. 488–501. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33709-3_35CrossRefGoogle Scholar
  11. 11.
    Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: LabelMe: a database and web-based tool for image annotation. Int. J. Comput. Vis. 77(1), 157–173 (2008)CrossRefGoogle Scholar
  12. 12.
    Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (2010)Google Scholar
  13. 13.
    LeCun, Y., Huang, F.J., Bottou, L.: Learning methods for generic object recognition with invariance to pose and lighting. In: Computer Vision and Pattern Recognition(CVPR 2004) (2004)Google Scholar
  14. 14.
    Endres, I., Hoiem, D.: Category independent object proposals. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 575–588. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15555-0_42CrossRefGoogle Scholar
  15. 15.
    Wang, X., Yang, M., Zhu, S., Lin, Y.: Regionlets for generic object detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 2071–2084 (2015)CrossRefGoogle Scholar
  16. 16.
    Zeiler, M., Taylor, G., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: Computer Vision and Pattern Recognition (CVPR2011) (2011)Google Scholar
  17. 17.
    Howard, A.G.: Some improvements on deep convolutional neural network based image classification. In: Proceedings of the ICLR2014 (2014)Google Scholar
  18. 18.
    Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15561-1_11CrossRefGoogle Scholar
  19. 19.
    Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 106(1), 178–187 (2007)CrossRefGoogle Scholar
  20. 20.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR2015 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Tingting Yang
    • 1
  • Shuwen Jia
    • 2
  • Huanhuan Zhang
    • 3
    Email author
  • Mingquan Zhou
    • 3
  1. 1.Institute of Information and Intelligence EngineeringUniversity of SanyaSanyaChina
  2. 2.Teaching Management OfficeUniversity of SanyaSanyaChina
  3. 3.Collage of Information Science and TechnologyBeijing Normal UniversityBeijingChina

Personalised recommendations