Research on Cascading Failures in Complex Network

  • Yu NanEmail author
  • Yaohui Hao
  • Fengjuan Zhang
  • Gang Zhou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11068)


The study on the cascading failure of complex network is an important branch in the complex network researches. In this paper, the attack strategies used in the researches on the cascading failure of complex network at home and abroad have been summarized. At the same time, the different characteristics of the new attack strategies and the traditional attack strategies have been analyzed. The modeling principles and the methods of the cascading failure model of complex network have been proposed. Furthermore, the research progress of the cascading failure in the complex network is reviewed. The existing problems as well as the future development trends have been pointed out.


Complex network Attack strategy Cascading failure Model 


  1. 1.
    Apicella, C.L., Marlowe, F.W., Fowler, J.H., et al.: Social networks and cooperation in huntergatherers. Nature 481(7382), 497–501 (2011)CrossRefGoogle Scholar
  2. 2.
    Albert, R., Jeong, H., Barabási, A.L.: Internet: diameter of the world-wide web. Nature 401(6749), 130–131 (1999)CrossRefGoogle Scholar
  3. 3.
    Krebs, V.E.: Mapping networks of terrorist ce11s. Connections 24(3), 43–52 (2001)Google Scholar
  4. 4.
    Hossain, M.M., Alam, S.: A complex network approach towards modeling and analysis of the Australian airport network. J. Air Transp. Manag. 60, 1–9 (2017)CrossRefGoogle Scholar
  5. 5.
    Newman, M.E.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. U.S.A. 98(2), 404–409 (2000)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hu, J., Yu, J., Cao, J., et al.: Topological interactive analysis of power system and its communication module: a complex network approach. Physica A 416, 99–111 (2014)CrossRefGoogle Scholar
  7. 7.
    Zhou, Y., Wang, S.: Generic model of reverse logistics network design. J. Transp. Syst. Eng. Inf. Technol. 8(3), 71–78 (2008)Google Scholar
  8. 8.
    Stam, C.J.: Modern network science of neurological disorders. Nat. Rev. Neurosci. 15(10), 683 (2014)CrossRefGoogle Scholar
  9. 9.
    Bjornson, E., Matthaiou, M., Debbah, M.: Massive MIMO with non-ideal arbitrary arrays: hardware scaling laws and circuit-aware design. IEEE Trans. Wirel. Commun. 14(8), 4353–4368 (2015)CrossRefGoogle Scholar
  10. 10.
    Albert, R., Jeony, H., Barabasi, A.L.: Attack and error tolerance in complex networks. Nature 406(6794), 387–482 (2000)CrossRefGoogle Scholar
  11. 11.
    Holme, P., Kim, B.J., Yoon, C.N., et al.: Attack vulnerability of complex networks. Phys. Rev. E 65(5 Pt 2), 056109 (2002)CrossRefGoogle Scholar
  12. 12.
    Guillaume, J.-L., Latapy, M., Magnien, C.: Comparison of failures and attacks on random and scale-free networks. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 186–196. Springer, Heidelberg (2005). Scholar
  13. 13.
    Nie, T., Guo, Z., Zhao, K., et al.: New attack strategies for complex networks. Physica A 424, 248–253 (2015)CrossRefGoogle Scholar
  14. 14.
    Pu, C.L., Cui, W.: Vulnerability of complex networks under path-based attacks. Physica A 419, 622–629 (2015)CrossRefGoogle Scholar
  15. 15.
    Pu, C., Li, S., Michaelson, A., et al.: Iterative path attacks on networks. Phys. Lett. A 379(28–29), 1633–1638 (2015)CrossRefGoogle Scholar
  16. 16.
    Shao, S., Huang, X., Stanley, H.E., et al.: Percolation of localized attack on complex networks. New J. Phys. 17(2), 1–11 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yuan, X., Shao, S., Stanley, H.E., et al.: How breadth of degree distribution influences network robustness: comparing localized and random attacks. Phys. Rev. E 92(3), 032122 (2015)CrossRefGoogle Scholar
  18. 18.
    Dong, G., Hao, H., Du, R., et al.: Localized attack on clustering networks, p. 14 (2016). arXiv:1610.04759
  19. 19.
    Dong, G., Du, R., Hao, H., et al.: Modified localized attack on complex network. EPL 113(2), 28002 (2016)CrossRefGoogle Scholar
  20. 20.
    Sood, A.K., Enbody, R.J.: Targeted cyberattacks: a superset of advanced persistent threats. IEEE Secur. Priv. 11(1), 54–61 (2013)Google Scholar
  21. 21.
    Xenakis, C., Ntantogian, C.: An advanced persistent threat in 3G networks: attacking the home network from roaming networks. Comput. Secur. 40(2), 84–94 (2014)CrossRefGoogle Scholar
  22. 22.
    Marchetti, M., Pierazzi, F., Colajanni, M., et al.: Analysis of high volumes of network traffic for advanced persistent threat detection. Comput. Netw. 109, 127–141 (2016)CrossRefGoogle Scholar
  23. 23.
    Motter, A.E., Lai, Y.C.: Cascade-based attacks on complex networks. Phys. Rev. E 66(6), 065102 (2002)CrossRefGoogle Scholar
  24. 24.
    Moreno, Y., Gomez, J.B., Pacheco, A.F.: Instability of scale-free networks under node-breaking avalanches. EPL 58(4), 630–636 (2002)CrossRefGoogle Scholar
  25. 25.
    Moreno, Y., Pastor Satorras, R., Vazquez, A.: Critical load and congestion instabilities in scalefree networks. Europhys. Lett. 62, 292–298 (2003)CrossRefGoogle Scholar
  26. 26.
    Kim, B.J.: Phase transition in the modified fiber bundle model. EPL 66(6), 819–825 (2004)CrossRefGoogle Scholar
  27. 27.
    Kim, D.H., Kim, B.J., Jeong, H.: Universality class of the fiber bundle model on complex networks. Phys. Rev. Lett. 94, 025501 (2005)CrossRefGoogle Scholar
  28. 28.
    Bonabeau, E.: Sandpile dynamics on random graphs. J. Phys. Soc. Jpn. 64, 327–328 (1995)CrossRefGoogle Scholar
  29. 29.
    Goh, K.I., Lee, D.S., Kahng, B., et al.: Sandpile on scale-free neworks. Phys. Rev. Lett. 91, 148701 (2003)CrossRefGoogle Scholar
  30. 30.
    Lee, D.S., Goh, K.I., Kahng, B., Kim, D.: Sandpile avalanche dynamics on scale-free networks. Physica A 338, 84–91 (2004)CrossRefGoogle Scholar
  31. 31.
    Huang, L., Yang, L., Yang, K.Q.: Geographical effects on cascading breakdowns of scale-free networks. Phys. Rev. E 73, 036102 (2006)CrossRefGoogle Scholar
  32. 32.
    Holme, P., Kim, B.J.: Vertex overload breakdown in evolving networks. Phys. Rev. E 65(6), 066l09 (2002)CrossRefGoogle Scholar
  33. 33.
    Holme, P.: Edge overload breakdown in evolving networks. Phy. Rev. E 66(3), 036119 (2002)CrossRefGoogle Scholar
  34. 34.
    Dobson, I., Carreras, B.A., Lynch, V.E., et al.: An initial model for complex dynamics in electric power system bIackouts. In: 34th HICSS (2001)Google Scholar
  35. 35.
    Dobson, I., Carreras, B.A., Newman, D.E.: A probabilistic loading-dependent model of cascading failure and possible implications for blackouts. In: 36th HICSS (2003)Google Scholar
  36. 36.
    Sun, Q., Shi, L., Ni., Y., et al.: An enhanced cascading failure model integrating data mining technique (2017)Google Scholar
  37. 37.
    Yan, J., He, H., Sun, Y.: Integrated security analysis on cascading failure in complex networks. IEEE Trans. Inf. Forensics Secur. 9(3), 451–463 (2016)CrossRefGoogle Scholar
  38. 38.
    Fang, X., Yang, Q., Yan, W.: Modeling and analysis of cascading failure in directed complex networks. Saf. Sci. 65(3), 1–9 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.China State Key Laboratory of Mathematical Engineering and Advanced ComputingZhengzhouChina

Personalised recommendations