Advertisement

The Quasi-circular Mapping Visualization Based on Extending and Reordering Dimensions for Visual Clustering Analysis

  • Shan Huang
  • Ming Li
  • Hao ChenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11064)

Abstract

Radial coordinate visualization (RadViz) and Star Coordinates (SC) can effectively map high dimensional data to low dimensional space, owing to which can place an arbitrary number of Dimension Anchors (DAs). Nevertheless, the problem owner is faced with ordering DAs, which is a NP-complete problem and visual results of crowding which hamper clustering analysis. We introduce a new radial layout visualization, called the Quasi-circular mapping visualization (QCMV), to address those problems in this paper. Firstly, QCMV extend the original dimension of datasets by the probability distribution histogram of the dimension and affinity propagation (AP) algorithm. In additional, distributing them on the unit circle by their correlation according to the correlation of the extended dimensions. Then, mapping the dimensions extended and reordered data to integrate a polygon in the Quasi-circular space and visualizing them by the geometric center and area of the polygon in the three dimension. Finally strengthening their visual clustering effect with t-SNE. We also compare the visual clustering results of RadViz, SC and QCMV with two indexes, correct rate and Dunn index on visually analyzing the three datasets. It shows better effect of visual clustering with QCMV.

Keywords

Quasi-circular mapping visualization Visual clustering Multi-dimensional data 

References

  1. 1.
    Wang, Y., Li, Z., Wang, Y., et al.: A novel approach for stable selection of informative redundant features from high dimensional fMRI data. Comput. Sci. 146, 191–208 (2016)Google Scholar
  2. 2.
    Engel, D., Hummel, M., Hoepel, F., et al.: Towards high-dimensional data analysis in air quality research. In: Eurographics Conference on Visualization. The Eurographs Association & John Wiley & Sons, Ltd., pp. 101–110 (2013)Google Scholar
  3. 3.
    Zhang, X., Lai, S.Q., Liu, N.W.: Research on cloud computing data security model based on multi-dimension. In: International Symposium on Information Technology in Medicine and Education, IEEE, pp. 897–900 (2012)Google Scholar
  4. 4.
    Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2(1), 37–52 (1987)CrossRefGoogle Scholar
  5. 5.
    Mohebi, E., Bagirov, A.: Constrained self organizing maps for data clusters visualization. Neural Process. Lett. 43(3), 849–869 (2016)CrossRefGoogle Scholar
  6. 6.
    Dzemyda, G., Kurasova, O., Žilinskas, J.: Combining multidimensional scaling with artificial neural networks. Multidimensional Data Visualization. SOIA, vol. 75, pp. 113–177. Springer, New York (2013).  https://doi.org/10.1007/978-1-4419-0236-8_4CrossRefzbMATHGoogle Scholar
  7. 7.
    Kireeva, N., Baskin, I.I., Gaspar, H.A., et al.: Generative topographic mapping (GTM): universal tool for data visualization, structure-activity modeling and dataset comparison. Mol. Inform. 31(3–4), 301–312 (2012)CrossRefGoogle Scholar
  8. 8.
    Xie, Y., Sun, P.: Terahertz data combined with principal component analysis applied for visual classification of materials. Opt. Quant. Electron. 50(1), 46–57 (2018)CrossRefGoogle Scholar
  9. 9.
    Sarlin, P., Marghescu, D.: Visual predictions of currency crises using self-organizing maps. In: IEEE International Conference on Data Mining Workshops. IEEE, pp. 15–38 (2011)Google Scholar
  10. 10.
    Sarikaya, A., Gleicher, M.: Scatterplots: tasks, data and designs. IEEE Trans. Vis. Comput. Graphics 24(1), 402–412 (2018)CrossRefGoogle Scholar
  11. 11.
    Heinrich, J., Weiskopf, D.: State of the art of parallel coordinates. Eurographics 34(1), 17–25 (2012)Google Scholar
  12. 12.
    Hoffman, P., Grinstein, G., Marx, K., et al.: DNA visual and analytic data mining. In: Visualization 1997, Proceedings. IEEE, pp. 437–441 (1997)Google Scholar
  13. 13.
    Kandogan, E.: Star coordinates: a multi-dimensional visualization technique with uniform treatment of dimensions. In: Proceedings of the IEEE Information Visualization Symposium Late Breaking Hot Topics, pp. 9–12 (2000)Google Scholar
  14. 14.
    Kandogan, E.: Visualizing multi-dimensional clusters, trends, and outliers using star coordinates. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, DBLP, pp. 107–116 (2001)Google Scholar
  15. 15.
    Cerdas, F., Kaluza, A., Erkisi-Arici, S., et al.: Improved visualization in LCA through the application of cluster heat maps. Procedia CIRP 61, 732–737 (2017)CrossRefGoogle Scholar
  16. 16.
    Li, M., Zhen, L., Yao, X.: How to read many-objective solution sets in parallel coordinates [educational forum]. IEEE Comput. Intell. Mag. 12(4), 88–100 (2017)CrossRefGoogle Scholar
  17. 17.
    Walker, D.J., Everson, R., Fieldsend, J.E.: Visualizing mutually nondominating solution sets in many-objective optimization. IEEE Trans. Evol. Comput. 17(2), 165–184 (2013)CrossRefGoogle Scholar
  18. 18.
    Ankerst, M., Berchtold, S., Keim, D.A.: Similarity clustering of dimensions for an enhanced visualization of multidimensional data. In: IEEE Symposium on Information Visualization, 1998. Proceedings. IEEE, vol. 153, pp. 52–60 (1998)Google Scholar
  19. 19.
    Di Caro, L., Frias-Martinez, V., Frias-Martinez, E.: Analyzing the role of dimension arrangement for data visualization in RadViz. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS (LNAI), vol. 6119, pp. 125–132. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13672-6_13CrossRefGoogle Scholar
  20. 20.
    Sharko, J., Grinstein, G., Marx, K.A.: Vectorized RadViz and its application to multiple cluster datasets. IEEE Trans. Vis. Comput. Graph. 14(6), 1427–1444 (2008)CrossRefGoogle Scholar
  21. 21.
    Zhou, F., Huang, W., Li, J., et al.: Extending dimensions in RadViz based on mean shift. In: Visualization Symposium. IEEE, pp. 111–115 (2015)Google Scholar
  22. 22.
    Dueck, D., Frey, B.J.: Non-metric affinity propagation for unsupervised image categorization. IEEE International Conference on Computer Vision. IEEE, pp. 1–8 (2007)Google Scholar
  23. 23.
    Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(2605), 2579–2605 (2008)zbMATHGoogle Scholar
  24. 24.
    Russell, A., Daniels, K., Grinstein, G.: Voronoi diagram based dimensional anchor assessment for radial visualizations. In: International Conference on Information Visualisation, pp. 229–233. IEEE (2012)Google Scholar
  25. 25.
    Lehmann, D.J., Theisel, H.: Orthographic star coordinates. IEEE Trans. Vis. Comput. Graph. 19(12), 2615–2624 (2013)CrossRefGoogle Scholar
  26. 26.
    Zanabria, G.G., Nonato, L.G., Gomez-Nieto, E.: iStar (i*): an interactive star coordinates approach for high-dimensional data exploration. Comput. Graph. 60, 107–118 (2016)CrossRefGoogle Scholar
  27. 27.
    Rubiosanchez, M., Raya, L., Diaz, F., et al.: A comparative study between RadViz and star coordinates. IEEE Trans. Vis. Comput. Graph. 22(1), 619–628 (2015)CrossRefGoogle Scholar
  28. 28.
    Gan, H., Sang, N., Huang, R.: Self-training-based face recognition using semi-supervised linear discriminant analysis and affinity propagation. J. Opt. Soc. Am. A 31(1), 1–6 (2014)CrossRefGoogle Scholar
  29. 29.
    Sharma, S., Agrawal, A., Patel, D.: Class aware exemplar discovery from microarray gene expression data. In: Kumar, N., Bhatnagar, V. (eds.) BDA 2015. LNCS, vol. 9498, pp. 244–257. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-27057-9_17CrossRefGoogle Scholar
  30. 30.
    Xie, Q., Remil, O., Guo, Y., et al.: Object detection and tracking under occlusion for object-level RGB-D video segmentation. IEEE Trans. Multimed. 20(3), 580–592 (2018)CrossRefGoogle Scholar
  31. 31.
    Kaveh, A., Rahimi Bondarabady, H.A.: Finite element mesh decomposition using complementary Laplacian matrix. Commun. Numer. Methods Eng. 16(6), 379–389 (2000)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23(23), 298–305 (1973)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Wunsch, D., Xu, R.: Clustering (IEEE Press Series on Computational Intelligence). IEEE Computer Society Press, Washington DC (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.National Key Laboratory of Image Processing and Pattern Recognition in JiangxiNanchang Hangkong UniversityNanchangChina
  2. 2.School of Information EngineeringNanchang Hangkong UniversityNanchangChina

Personalised recommendations