Les techniques de neurorééducation actuellement en vigueur varient dans leur rationnel et leur stratégie sans preuve véritable de leur différence dans leur effi cacité thérapeutique (1). On sait en revanche que l’entraînement doit être intensif et prolongé (2, 3).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van Peppen RP, Kwakkel G, Wood-Dauphinee S et al. (2004) The impact of physical therapy on functional outcomes after stroke: what’s the evidence? Clin Rehabil. 18: 833–62CrossRefPubMedGoogle Scholar
  2. 2.
    Page SJ. (2003) Intensity versus task-specifi city after stroke: how important is intensity? Am J Phys Med Rehabil 82: 730–2CrossRefPubMedGoogle Scholar
  3. 3.
    Kwakkel G, Wagenaar RC, Twisk JW et al. (1999) Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. Lancet 354: 191–6CrossRefPubMedGoogle Scholar
  4. 4.
    Krebs HI, Hogan N, Aisen ML, Volpe BT (1998). Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 6: 75–87CrossRefPubMedGoogle Scholar
  5. 5.
    Krebs HI, Ferraro M, Buerger SP et al. (2004) Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus. J Neuroengineering Rehabil 1: 5CrossRefGoogle Scholar
  6. 6.
    Guittet J, Kwee HH, Quetin N, Yclon J (1979) The Spartacus telethesis: manipulator control studies. Bull Prosthet Res 16: 69–105PubMedGoogle Scholar
  7. 7.
    Laffont I, Biard N, Chalubert G et al. (2009) Evaluation of a graphic interface to control a robotic grasping arm: a multicenter study. Arch Phys Med Rehabil 90: 1740–8CrossRefPubMedGoogle Scholar
  8. 8.
    Hillman MR, Pullin GM, Gammie AR et al. (1991) Clinical experience in rehabilitation robotics. J Biomed Eng 13: 239–43CrossRefPubMedGoogle Scholar
  9. 9.
    Busnel M, Gelin R, Lesigne B (2001) Evaluation of a robotized MASTER/RAID workstation at home: protocol and fi rst results. In: Mokhtari M, editor. Integration of assistive technology in the information age. Vol. 9, Assistive Technology Research Series. Amsterdam: IOS Pr. p. 299–306Google Scholar
  10. 10.
    Mahoney R (2001) The raptor wheelchair robot system. In: Mokhtari M, editor. Integration of assistive technology in the information age. Vol. 9, Assistive Technology Research Series. Amsterdam: IOS Pr. p. 135–41Google Scholar
  11. 11.
    Driessen BJ, Evers HG, Van Woerden JA (2001) MANUS, a wheelchair-mounted rehabilitation robot. Proct Inst Mech En 215: 285–90CrossRefGoogle Scholar
  12. 12.
    Topping M (2002) An overview of the development of Handy1, a rehabilitation robot to assist the severely disabled. J of Intelligent Robot Syst 34: 253–63CrossRefGoogle Scholar
  13. 13.
    Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA (2006). Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res 168: 368–83CrossRefPubMedGoogle Scholar
  14. 14.
    Pignolo L (2009) Robotics in neuro-rehabilitation. J Rehabil Med 41: 955–60CrossRefPubMedGoogle Scholar
  15. 15.
    Sanchez RJ, Liu J, Rao S, Shah P, Smith R, Rahman T, Cramer SC, Bobrow JE, Reinkensmeyer DJ (2006) Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans Neural Syst Rehabil Eng 14: 378–89CrossRefPubMedGoogle Scholar
  16. 16.
    Housman SJ, Scott KM, Reinkensmeyer DJ (2009) A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair 23: 505–14CrossRefPubMedGoogle Scholar
  17. 17.
    Mihelj MN, Riener T, Armin R (2006) Toward a six DoF upper limb rehabilitation robot Biomedical Robotics and Biomechatronics, BioRob The First IEEE/RAS-EMBS International Conference, 1154–1159Google Scholar
  18. 18.
    Reinkensmeyer DJ, Kahn LE, Averbuch M et al. (2000) Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide. J Rehabil Res Dev 37: 653–62PubMedGoogle Scholar
  19. 19.
    Nudo RJ (2007). Postinfarct cortical plasticity and behavioral recovery. Stroke 38: 840–5CrossRefPubMedGoogle Scholar
  20. 20.
    Nudo RJ, Wise BM, SiFuentes F, Milliken GW (1996) Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272 179: 1–4Google Scholar
  21. 21.
    Lum P, Reinkensmeyer D, Mahoney R et al. (2002) Robotic devices for movement therapy after stroke: current status and challenges to clinical acceptance. Top Stroke Rehabil Winter 8: 40–53CrossRefGoogle Scholar
  22. 22.
    Hesse S, Schulte-Tigges G, Konrad M et al. (2003) Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil 84: 915–20CrossRefPubMedGoogle Scholar
  23. 23.
    Lum PS, Burgar CG, Shor PC et al. (2002). Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil 83: 952–9CrossRefPubMedGoogle Scholar
  24. 24.
    Volpe BT, Krebs HI, Hogan N et al. (2000) A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation. Neurology 54: 1938–44PubMedGoogle Scholar
  25. 25.
    Cirstea CM, Ptito A, Levin MF (2006) Feedback and cognition in arm motor skill reacquisition after stroke. Stroke 37: 1237–42CrossRefPubMedGoogle Scholar
  26. 26.
    Huang H, Wolf SL, He J (2006) Recent developments in biofeedback for neuromotor rehabilitation. J Neuroeng Rehabil 21: 3–11Google Scholar
  27. 27.
    Liepert J, Bauder H, Wolfgang HR et al. (2000) Treatment-induced cortical reorganization after stroke in humans. Stroke 31: 1210–6PubMedGoogle Scholar
  28. 28.
    Kwakkel G, Kollen BJ, Krebs HI (2008) Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair 22: 111–21PubMedGoogle Scholar
  29. 29.
    Prior SD (1990) An electric wheelchair mounted robotic arm — a survey of potential users. J Med Eng Technol 14: 143–54CrossRefPubMedGoogle Scholar
  30. 30.
    Schuyler JL, Mahoney RM (2000) Assessing human-robotic performance for vocational placement. IEEE Trans Rehabil Eng 8: 394–404CrossRefPubMedGoogle Scholar
  31. 31.
    Evers H, Beugels E, Peters (2001) MANUS towards a new decade. In: Mokhtari M, editor. Integration of assistive technology in the information age. Vol. 9, Assistive Technology Research Series. Amsterdam: IOS Pr. p. 155–61Google Scholar

Copyright information

© Springer-Verlag France, Paris 2010

Authors and Affiliations

  • Gilles Kemoun
    • 1
  1. 1.Fondation hospitalière Sainte-MarieParis

Personalised recommendations