Explorations fonctionnelles spécialisées du sperme et AMP

  • F. Boitrelle
  • P. Marchetti
  • V. Mitchell
  • B. Leroy-Martin
  • C. Marchetti

Résumé

La fécondation humaine implique une succession d’étapes palières aboutissant à l’activation de l’ovocyte et à l’initiation de l’embryogenèse. Le chemin jusqu’à l’ovocyte est long et semé d’embûches et il s’impose donc aux spermatozoïdes, d’être mobiles et fécondants. Au terme d’un parcours de près de 3 000 fois leur taille, les spermatozoïdes, ayant franchi le col et «escaladé» les voies génitales féminines, atteignent finalement le sommet des trompes de Fallope et gagnent l’ampoule tubaire. Le spermatozoïde, alors capacité, doit pénétrer le complexe cumulo-ovocytaire, reconnaître et se lier à la zone pellucide de l’ovocyte, réaliser sa réaction acrosomique et forer la zone pellucide. Parvenu dans l’espace périvitellin, il s’arrimera à la membrane plasmique ovocytaire. Les membranes spermatique et ovocytaire fusionneront et le contenu du spermatozoïde s’intègrera alors au cytoplasme ovocytaire. L’ADN très condensé contenu dans la tête spermatique devra être décondensé pour former le pronucleus mâle. Ainsi, le spermatozoïde élu aura franchi de nombreux obstacles pour apporter au but, ce qu’il aura jusqu’alors protégé, la moitié du patrimoine génétique du futur zygote.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Griffith CS, Grimes DA (1990) The validity of the postcoital test. Am J Obstet Gynecol 162:615–620PubMedGoogle Scholar
  2. 2.
    Zorn JR (2006) Current place of the Huhner test in the work-up of couple infertility. Gynecol Obstet Fertil 34:142–146PubMedCrossRefGoogle Scholar
  3. 3.
    De AM, Zouari R, Jouannet P, Feneux D (1991) In-vitro effects of anti-sperm antibodies on human sperm movement. Hum Reprod 6:405–410Google Scholar
  4. 4.
    Mortimer ST, Mortimer D (1990) Kinematics of human spermatozoa incubated under capacitating conditions. J Androl 11:195–203PubMedGoogle Scholar
  5. 5.
    ESHRE Andrology Special Interest Group. European Society for Human Reproduction and Embryology (1998) Guidelines on the application of CASA technology in the analysis of spermatozoa. Hum Reprod 13:142–145CrossRefGoogle Scholar
  6. 6.
    Oehninger S, Franken DR, Sayed E et al. (2000) Sperm function assays and their predictive value for fertilization outcome in IVF therapy: a meta-analysis. Human Reproduction Update 6:160–168PubMedCrossRefGoogle Scholar
  7. 7.
    Arslan M, Morshedi M, Arslan EOet al. (2006) Predictive value of the hemizona assay for pregnancy outcome in patients undergoing controlled ovarian hyperstimulation with intrauterine insemination. Fertil Steril 85:1697–1707PubMedCrossRefGoogle Scholar
  8. 8.
    Liu DY, Lopata A, Johnston WI, Baker HW (1988) A human sperm-zona pellucida binding test using oocytes that failed to fertilize in vitro. Fertil Steril 50:782–788PubMedGoogle Scholar
  9. 9.
    Esteves SC, Sharma RK, Thomas AJ, Agarwal A (2007) Evaluation of acrosomal status and sperm viability in fresh and cryopreserved specimens by the use of fluorescent peanut agglutinin lectin in conjunction with hypoosmotic swelling test. Int Braz J Urol 33:364–374PubMedCrossRefGoogle Scholar
  10. 10.
    Esterhuizen AD, Franken DR, Lourens JG, Van Rooyen LH (2001) Clinical importance of zona pellucida-induced acrosome reaction and its predictive value for IVF. Hum Reprod 16:138–144PubMedCrossRefGoogle Scholar
  11. 11.
    Pilikian S, Guerin JF, Adeleine P et al. (1992) Spontaneous and ionophore induced acrosome reaction in asthenozoospermic infertile semen. Hum Reprod 7:991–993PubMedGoogle Scholar
  12. 12.
    Makkar G, Ng EH, Yeung WS, Ho PC (2003) The significance of the ionophore-challenged acrosome reaction in the prediction of successful outcome of controlled ovarian stimulation and intrauterine insemination. Hum Reprod 18:534–539PubMedCrossRefGoogle Scholar
  13. 13.
    Sigman M, Zini A (2009) Semen analysis and sperm function assays: what do they mean?” Semin Reprod Med 27:115–123PubMedCrossRefGoogle Scholar
  14. 14.
    Yanagimachi R, Yanagimachi H, Rogers BJ (1976) The use of zona-free animal ova as a test-system for the assessment of the fertilizing capacity of human spermatozoa. Biol Reprod 15:471–476PubMedCrossRefGoogle Scholar
  15. 15.
    Auger J, Mesbah M, Huber C, Dadoune JP (1990) Aniline blue staining as a marker of sperm chromatin defects associated with different semen characteristics discriminates between proven fertile and suspected infertile men. Int J Androl 13:452–462PubMedCrossRefGoogle Scholar
  16. 16.
    Morse-Gaudio M, Risley MS (1994) Topoisomerase II expression and VM-26 induction of DNA breaks during spermatogenesis in Xenopus laevis. J Cell Sci 107:2887–2898PubMedGoogle Scholar
  17. 17.
    Carrell DT, Liu L (2001) Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl 22:604–610PubMedGoogle Scholar
  18. 18.
    Saleh RA, Agarwal A, Nada EA et al. (2003) Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril 79Suppl 3:1597–1605PubMedCrossRefGoogle Scholar
  19. 19.
    Aitken RJ, Baker MA, Sawyer D (2003) Oxidative stress in the male germ line and its role in the aetiology of male infertility and genetic disease. Reprod Biomed Online 7:65–70PubMedCrossRefGoogle Scholar
  20. 20.
    Marchetti C, Obert G, Deffosez A et al. (2002) Study of mitochondrial membrane potential, reactive oxygen species, DNA fragmentation and cell viability by flow cytometry in human sperm. Hum Reprod 17:1257–1265PubMedCrossRefGoogle Scholar
  21. 21.
    Marchetti C, Gallego MA, Defossez A et al. (2004) Staining of human sperm with fluorochrome-labeled inhibitor of caspases to detect activated caspases: correlation with apoptosis and sperm parameters. Hum.Reprod 19:1127–1134PubMedCrossRefGoogle Scholar
  22. 22.
    Sergerie M, Bleau G, Teule R et al. (2005) Sperm DNA integrity as diagnosis and prognosis element of male fertility. Gynecol Obstet Fertil 33:89–101PubMedCrossRefGoogle Scholar
  23. 23.
    Evenson DP, Larson KL, Jost LK (2002) Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl 23:25–43PubMedGoogle Scholar
  24. 24.
    Shwood-Smith MJ, Edwards RG (1996) DNA repair by oocytes. Mol.Hum Reprod 2:46–51CrossRefGoogle Scholar
  25. 25.
    Marchetti C, Jouy N, Leroy-Martin B et al. (2004) Comparison of four fluorochromes for the detection of the inner mitochondrial membrane potential in human spermatozoa and their correlation with sperm motility. Hum. Reprod 19:2267–2276PubMedCrossRefGoogle Scholar
  26. 26.
    Piasecka M, Kawiak J (2003) Sperm mitochondria of patients with normal sperm motility and with asthenozoospermia: morphological and functional study. Folia HistochemCytobiol 41:125–139Google Scholar
  27. 27.
    Wang X, Sharma RK, Gupta A et al. (2003) Alterations in mitochondria membrane potential and oxidative stress in infertile men: a prospective observational study. Fertil Steril 80Suppl 2:844–850PubMedCrossRefGoogle Scholar
  28. 28.
    Espinoza JA, Schulz MA, Sanchez R, Villegas JV (2009) Integrity of mitochondrial membrane potential reflects human sperm quality. Andrologia 41:51–54PubMedCrossRefGoogle Scholar
  29. 29.
    Troiano L, Granata AR, Cossarizza A et al. (2000) Mitochondrial membrane potential and DNA stainability in human sperm cells: a flow cytometry analysis with implications for male infertility. Exp Cell Res 241:384–393CrossRefGoogle Scholar
  30. 30.
    Gallon F, Marchetti C, Jouy N, Marchetti P (2006) The functionality of mitochondria differentiates human spermatozoa with high and low fertilizing capability. Fertil Steril 86:1526–1530PubMedCrossRefGoogle Scholar
  31. 31.
    Said T, Agarwal A, Grunewald S et al. (2006) Selection of nonapoptotic spermatozoa as a new tool for enhancing assisted reproduction outcomes: an in vitro model. Biol Reprod 74:530–537PubMedCrossRefGoogle Scholar
  32. 32.
    Paasch U, Sharma RK, Gupta AK et al. (2004) Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa. Biol Reprod 71:1828–1837PubMedCrossRefGoogle Scholar
  33. 33.
    Oosterhuis GJ, Mulder AB, Kalsbeek-Batenburg E et al. (2000) Measuring apoptosis in human spermatozoa: a biological assay for semen quality? Fertil Steril 74:245–250PubMedCrossRefGoogle Scholar
  34. 34.
    van Heerde WL, de Groot PG, Reutelingsperger CP (1995) The complexity of the phospholipid binding protein Annexin V. Thromb Haemost 73:172–179PubMedGoogle Scholar
  35. 35.
    Glander HJ, Schaller J (1999) Binding of annexin V to plasma membranes of human spermatozoa: a rapid assay for detection of membrane changes after cryostorage. Mol Hum Reprod 5:109–115PubMedCrossRefGoogle Scholar
  36. 36.
    Kotwicka M, Jendraszak M, Warchol JB (2002) Plasma membrane translocation of phosphatidylserine in human spermatozoa. Folia Histochem Cytobiol 40:111–112PubMedGoogle Scholar
  37. 37.
    de Vries KJ, Wiedmer T, Sims PJ, Gadella BM (2003) Caspase-independent exposure of aminophospholipids and tyrosine phosphorylation in bicarbonate responsive human sperm cells. Biol Reprod 68:2122–2134PubMedCrossRefGoogle Scholar
  38. 38.
    Said TM, Grunewald S, Paasch U et al. (2005) Effects of magnetic-activated cell sorting on sperm motility and cryosurvival rates. Fertil Steril 83:1442–1446PubMedCrossRefGoogle Scholar
  39. 39.
    Said TM, Agarwal A, Grunewald S et al. (2006) Evaluation of sperm recovery following annexin V magnetic-activated cell sorting separation. Reprod Biomed Online 13:336–339PubMedCrossRefGoogle Scholar
  40. 40.
    Grunewald S, Reinhardt M, Blumenauer V et al. (2008) Increased sperm chromatin decondensation in selected nonapoptotic spermatozoa of patients with male infertility. Fertil Steril 92:572–577PubMedCrossRefGoogle Scholar
  41. 41.
    Aitken RJ (1994) A free radical theory of male infertility. Reprod Fertil Dev 6:19–23PubMedCrossRefGoogle Scholar
  42. 42.
    de Lamirande E, O’Flaherty C (2008) Sperm activation: role of reactive oxygen species and kinases. Biochim Biophys Acta 1784:106–115PubMedGoogle Scholar
  43. 43.
    Oliva R (2006) Protamines and male infertility. Human Reproduction Update 12:417–435PubMedCrossRefGoogle Scholar
  44. 44.
    Agarwal A, Makker K, Sharma R (2008) Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 59:2–11PubMedCrossRefGoogle Scholar
  45. 45.
    Smith R, Kaune H, Parodi D et al. (2006) Increased sperm DNA damage in patients with varicocele: relationship with seminal oxidative stress. Hum Reprod 21:986–993PubMedCrossRefGoogle Scholar
  46. 46.
    Saleh RA, Agarwal A, Sharma RK et al. (2002) Effect of cigarette smoking on levels of seminal oxidative stress in infertile men: a prospective study. Fertil Steril 78:491–499PubMedCrossRefGoogle Scholar
  47. 47.
    Agarwal A, Ikemoto I, Loughlin KR (1994) Relationship of sperm parameters with levels of reactive oxygen species in semen specimens. J Urol 152:107–110PubMedGoogle Scholar
  48. 48.
    Said TM, Agarwal A, Sharma RK et al. (2005) Impact of sperm morphology on DNA damage caused by oxidative stress induced by beta-nicotinamide adenine dinucleotide phosphate. Fertil Steril 83:95–103PubMedCrossRefGoogle Scholar
  49. 49.
    Sharma RK, Pasqualotto FF, Nelson DR et al. (1999) The reactive oxygen species-total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod 14:2801–2807PubMedCrossRefGoogle Scholar
  50. 50.
    Aitken RJ, Baker MA, O’Bryan M (2004) Shedding light on chemiluminescence: the application of chemiluminescence in diagnostic andrology. J Androl 25:455–465PubMedGoogle Scholar

Copyright information

© Springer-Verlag France, Paris 2011

Authors and Affiliations

  • F. Boitrelle
    • 1
    • 2
  • P. Marchetti
    • 3
  • V. Mitchell
    • 3
  • B. Leroy-Martin
    • 4
  • C. Marchetti
    • 3
  1. 1.Laboratoire spermiologie et de biologie de la reproductionHôpital Albert Calmette CHRU de Lille Boulevard du Professeur Jules LeclercqLille Cedex
  2. 2.CHIPSPoissy-SaintGermain
  3. 3.Laboratoire de biologie de la reproduction-spermiologieHôpital Jeanne de Flandre CHRU de LilleLille Cedex
  4. 4.Laboratoire d’histologie Faculté de MédecineUniversité de Lille IIGermain

Personalised recommendations