Advertisement

La physiologie du bas appareil urinaire de l’homme

  • L. Le Normand
  • J. -M. Buzelin

Résumé

La finalité fonctionnelle du bas appareil urinaire de l’homme est double :
  • apporter le confort, par la continence et la miction qui remplace une sécrétion continue d’urine, par son expulsion, massive, et volontairement contrôlée.

  • garantir la sécurité, en protégeant la fonction rénale par le maintien de basses pressions intra-vésicales.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Buzelin JM, Glémain P, Labat JJ, Le Normand L (1993) Physiologie et explorations fonctionnelles de la voie excrétrice urinaire. Enseignement du collège d’urologie. France: laboratoires Synthélabo France, division, médecine interneGoogle Scholar
  2. 2.
    Hunter DTJ (1954) A new concept of urinary bladder musculature. J Urol. 71: 695–704PubMedGoogle Scholar
  3. 3.
    Hutch JA (1971) The internal urinary sphincter: a double-loop system. J Urol. 105: 375–383PubMedGoogle Scholar
  4. 4.
    Gosling JA, Dixon JS, Critchley HO, Thompson SA (1981) A comparative study of the human external sphincter and periurethral levator ani muscles. Br J Urol. 53: 35–41PubMedCrossRefGoogle Scholar
  5. 5.
    Schroder HD (1985) Anatomical and pathoanatomical studies on the spinal efferent systems innervating pelvic structures. 1. Organization of spinal nuclei in animals. 2. The nucleus X-pelvic motor system in man. J Auton Nerv Syst. 14: 23–48PubMedCrossRefGoogle Scholar
  6. 6.
    Barrington FJF (1914) The nervous mechanism of micturition. Quart J Exp Physiol. 8: 33Google Scholar
  7. 7.
    Blok BF, Holstege G (1999) Two pontine micturition centers in the cat are not interconnected directly: implications for the central organization of micturition. J Comp Neurol. 403: 209–218PubMedCrossRefGoogle Scholar
  8. 8.
    Blok BF, Willemsen AT, Holstege G (1997) A PET study on brain control of micturition in humans. Brain. 120: 111–121PubMedCrossRefGoogle Scholar
  9. 9.
    el-Badawi A, Schenk EA (1966) Dual innervation of the mammalian urinary bladder. A histochemical study of the distribution of cholinergic and adrenergic nerves. Am J Anat. 119: 405–427PubMedCrossRefGoogle Scholar
  10. 10.
    Gosling JA, Dixon JS, Lendon RG (1977) The autonomic innervation of the human male and female bladder neck and proximal urethra. J Urol. 118: 302–305PubMedGoogle Scholar
  11. 11.
    Bridgewater M, Davies JR, Brading AF (1995) Regional variations in the neural control of the female pig urethra. Br J Urol. 76: 730–740PubMedGoogle Scholar
  12. 12.
    Braverman AS, Tallarida RJ, Ruggieri MRS (2002) Interaction between muscarinic receptor subtype signal transduction pathways mediating bladder contraction. Am J Physiol Regul Integr Comp Physiol. 283: R663–R668PubMedGoogle Scholar
  13. 13.
    Yamanishi T, Chapple CR, Chess-Williams R (2001) Which muscarinic receptor is important in the bladder? World J Urol. 19: 299–306PubMedCrossRefGoogle Scholar
  14. 14.
    Nasu K, Moriyama N, Fukasawa R, et al. (1998) Quantification and distribution of alpha1-adrenoceptor subtype mRNAs in human proximal urethra. Br J Pharmacol. 123: 1289–1293PubMedCrossRefGoogle Scholar
  15. 15.
    Burnstock G (1999) Release of vasoactive substances from endothelial cells by shear stress and purinergic mechanosensory transduction. J Anat. 194: 335–342PubMedCrossRefGoogle Scholar
  16. 16.
    Buzelin JM (1984) Urodynamique, Bas appareil urinaire, Masson, 200 pGoogle Scholar
  17. 17.
    Zinner NR, Ritter RC, Sterling AM (1976) The mechanism of micturition. Scientific Foundation of Urology. DI Williams, DG Chisholm. Londres: W. Heinemann Med. Books LtdGoogle Scholar
  18. 18.
    Glemain P, Cordonnier JP, Bochereau G, et al. (1993) Incidence de la forme et du calibre dans la résistance urétrale. Évaluation pour un urètre masculin normal et en cas d’obstruction par hypertrophie de prostate. Prog Urol. 995–1015Google Scholar
  19. 19.
    (1979) Bladder and urethral responses to sympathetic stimulation. Invest Urol. 17: 9–15Google Scholar
  20. 20.
    Jonas U, Tanagho EA (1975) Studies on vesicourethral reflexes. I. Urethral sphincteric responses to detrusor stretch. Invest Urol. 12: 357–373PubMedGoogle Scholar
  21. 21.
    Edvarsen P (1968) Nervous control of urinary bladder in cats. 1. The collecting phase. Acta Physiol Scand. 72: 151–171Google Scholar
  22. 22.
    Koff SA (1977) Striated muscle determinants of intraurethral resistance. Invest Urol. 15: 147–148PubMedGoogle Scholar
  23. 23.
    Edvarsen P (1968) Nervous control of urinary bladder in cats. II. The expulsion phase. Acta Physiol Scand. 72: 172–182PubMedCrossRefGoogle Scholar
  24. 24.
    Buzelin JM (1981) L’organisation neurologique de la fonction vésico-sphincterienne. J Urol (Paris). 87: 479–506Google Scholar
  25. 25.
    Labat JJ, Le CG, Mathe JF, Buzelin JM (1982) Inactivité du détrusor dans les lésions médullaires centrales. Hypothèse d’une hyperréflexie d’inhibition d’origine sympathique. J Urol (Paris). 88: 527–530Google Scholar
  26. 26.
    Godec CJ, Cass AS (1981) Psychosocial aspects of micturition. Urology. 17: 332–334PubMedCrossRefGoogle Scholar
  27. 27.
    Geirsson G, Fall M, Lindstrom S (1993) Subtypes of overactive bladder in old age. Age Ageing. 22: 125–131PubMedCrossRefGoogle Scholar
  28. 28.
    Griffiths DJ, McCracken PN, Harrison GM, Moore KN (1994) Urinary incontinence in the elderly: the brain factor. Scand J Urol Nephrol Suppl. 157: 83–88PubMedGoogle Scholar

Copyright information

© Springer-Verlag France 2011

Authors and Affiliations

  • L. Le Normand
    • 1
  • J. -M. Buzelin
    • 2
  1. 1.Institut de Transplantation d’Urologie et de NéphrologieCHU NantesNantes Cedex 01
  2. 2.Orvault

Personalised recommendations