Histoire naturelle du cancer du sein

  • M. Tubiana
  • S. Koscielny
Part of the Dépistage et cancer book series (DC)

Abstrait

Ľhistoire naturelle ďun type de cancer a pour objectif de reconstituer son évolution depuis sa naissance jusqu’à son émergence clinique, puis celle de ses métastases. Ľévénement le plus important de cette longue histoire est la dissémination métastatique à distance. En effet, aVan’t qu’elle ne survienne, le cancer est une maladie locorégionale curable par un traitement local: chirurgie ou radiothérapie; après qu’elle a eu lieu, le cancer est devenu une maladie généralisée dont le traitement est beaucoup plus aléatoire. Une caractéristique essentielle de ľhistoire naturelle Ďun type de cancer est donc la taille de la tumeur primitive au moment de la dissémination. Il faut également analyser les facteurs influençant cette taille, c’est-à-dire les facteurs pronostiques. Enfin, il faut considérer les étapes anatomiques de la dissémination métastatique, car les théories que ľon a pu avoir à leur sujet ont, depuis le XIXe siècle, influencé la stratégie thérapeutique.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Tubiana M, Chauvel P, Renaud A (1975) Vitesse de croissance et histoire naturelle du cancer du sein. Bull Cancer 62: 341–58PubMedGoogle Scholar
  2. 2.
    Koscielny S, Tubiana M, Le MG (1984) Breast cancer. Relationship between the size of the primary tumour and the probability of metastatic dissemination. Br J Cancer 49: 709–15PubMedGoogle Scholar
  3. 3.
    Koscielny S, Tubiana M, Valleron AJ (1985) A simulation model of the natural history of human breast cancer. Br J Cancer 52: 515–24PubMedGoogle Scholar
  4. 4.
    Atkinson EN, Brown BW, Montague ED (1986) Tumor volume, nodal status and metastasis in breast cancer women. J Nt Cancer Inst 76: 171–8Google Scholar
  5. 5.
    Tubiana M (1987) Histoire naturelle des cancers humains et facteurs pronostiques. Ľexemple du cancer du sein. Bull. Cancer (Paris) 74: 43–57Google Scholar
  6. 6.
    Koscielny S, Lê MG, Tubiana M (1989) The natural history of human breast cancer. The relationship between involvement of axillary lymph nodes and the intiation of distant metastases. Br J Cancer 59: 775–82PubMedGoogle Scholar
  7. 7.
    Carter CL, Allen C, Herson DE (1989) Relation of tumor size, lymph node status and survival in 24,740 breast cancer cases. Cancer 63: 181–7CrossRefPubMedGoogle Scholar
  8. 8.
    Tubiana M, Koscielny S (1991) Natural history of human breast cancer: Recent data and clinical implications. Breast Cancer Res Treat 18: 125–40CrossRefPubMedGoogle Scholar
  9. 9.
    Koscielny S, Tubiana M (1999) The link between local recurrence and distant metastases in human breast cancer. Int J Radiat Oncol Biol Phys 43: 11–24 and 1999, 45: 245–6PubMedGoogle Scholar
  10. 10.
    Kamby C et al. (1991) Pattern of spread and progression in relation to the characteristics of the primary tumour in human breast cancer. Acta Oncol 30: 301–8CrossRefPubMedGoogle Scholar
  11. 11.
    Tubiana M, Koscielny S (1990) The Natural History of Breast Cancer. Implication for a Screening Strategy. Int J Radiat Oncol 19: 1117–20CrossRefGoogle Scholar
  12. 12.
    Tubiana M, Koscielny S (1999) The rationale for early diagnosis of cancer. The example of breast cancer. Acta Oncol 38: 295–303CrossRefPubMedGoogle Scholar
  13. 13.
    Boyle P, Reake R (1988) Progress in understanding breast cancer. Epidemiological and biological interactions. Breast Cancer Res Treat 11: 91–112CrossRefPubMedGoogle Scholar
  14. 14.
    Lalanne CM (1963) Taux ďaccroissement et pronostic des tumeurs malignes du sein. In: P Denoix, C Rouquette (eds). Symposium on the prognosis of malignant tumours of the breast. Karger, Ed. Basel, pp. 16–23Google Scholar
  15. 15.
    Slack NH, Blumenson LE, Bross IDJ (1969) Therapeutic implications of a mathematic model caracterizing the course of breast cancer. Cancer 24: 960–71CrossRefPubMedGoogle Scholar
  16. 16.
    Charbit A, Malaise E, Tubiana M (1971) Relation between the pathological nature and the growth rate of human tumors. Eur J Cancer 7: 307–15PubMedGoogle Scholar
  17. 17.
    Kusama S et al. (1972) The gross rates of growth of human mammary carcinoma Cancer 30: 594–9CrossRefPubMedGoogle Scholar
  18. 18.
    Malaise EP et al. (1974) Relationship between the growth rate of human metastases, suvival and pathological type. Eur J Cancer 10: 451–9PubMedGoogle Scholar
  19. 19.
    Malaise EP, Chavaudra N, Tubiana M (1973) The relationship between growth rate, labelling index and histological type of human solid tumours. Eur J Cancer 9: 305–12PubMedGoogle Scholar
  20. 20.
    Contesso G et al. (1987) The importance of histologic grade in long-term pronosis of breast cancer. À study of 1,010 patients, uniformly treated, at the Institut Gustave Roussy. J Clin Oncol 5: 1378–86PubMedGoogle Scholar
  21. 21.
    Contesso G, Saccanijotti G, Bonadonna G (1989) Tumor grade as a pronostic factor in primary cancer. Eur J Cancer Clin Oncol 25: 403–9CrossRefPubMedGoogle Scholar
  22. 22.
    McGuire WL (1987) Prognosis factors for recurrence and survival in human breast cancer. Breast Cancer Res Treat 10: 5–9CrossRefPubMedGoogle Scholar
  23. 23.
    Tagnon HJ (1986) Changing concepts of the natural history of human mammary cancer and their effects on diagnosis and treatment. Eur J Cancer Clin Oncol 22: 123–8CrossRefPubMedGoogle Scholar
  24. 24.
    Tabar L et al. (1992) Breast cancer treatment and natural history: New insights from results of screening. Lancet 339: 412–4CrossRefPubMedGoogle Scholar
  25. 25.
    Tubiana M, Koscielny S (2001) The natural history of breast cancer and the link between local recurrence and distant metastases: Implications for therapy. Rep Pract Oncol Radiother 6: 181–95Google Scholar
  26. 26.
    Romddahl MS et al. (1961) The time of metastasis and release of circulating tumor cells as determined in an experimental system. Cancer 14: 883–8CrossRefGoogle Scholar
  27. 27.
    Fortin A et al. (1999) Local failure is responsible for the decrease in survival for patients with breast cancer treated with conservative surgery and postoperative radiotherapy. J Clin Oncol 17: 101–9PubMedGoogle Scholar
  28. 28.
    Tubiana M et al. (1989) Growth rate, kinetics of tumor cell proliferation and long-term outcome in human breast cancer. Int J Cancer 44: 17–22CrossRefPubMedGoogle Scholar
  29. 29.
    Clarke R et al. (1989) Progression of human breast cancer cells from hormonal dependent to independent growth both in vitro and in vivo. Proc Nat Acad Sc USA 86: 3649–53CrossRefGoogle Scholar
  30. 30.
    Meyer et al. (1986) Breast carcinoma cell kinetics, morphology, stage and host characteristics: A thymidine labelling study. Lab Invest 54: 41–51PubMedGoogle Scholar
  31. 31.
    Silvestrini R, Daidone MG, Di Fronzo G (1979) Relationship between proliferative activity and estrogen receptors in breast cancer. Cancer 44: 665–70CrossRefGoogle Scholar
  32. 32.
    Silvestrini R et al. (1986) Prognostic implication of labelling index versus estrogen receptors and tumor size in node negative breast cancer. Breast Cancer Res Treat, 7: 161–9CrossRefPubMedGoogle Scholar
  33. 33.
    Tubiana M, Courdi A (1989) Cell proliferation kinetics in human solid tumors: Relation to probability of metastatic dissemination and long-term survival. Radiother Oncol 15: 1–18CrossRefPubMedGoogle Scholar
  34. 34.
    Dressler LG et al. (1988) DNA flow cytometry and prognostic factors in 1,331 frozen breast cancer specimens. Cancer 61: 420–7CrossRefPubMedGoogle Scholar
  35. 35.
    Tubiana M, Arriagada R, Sarrazin D (1986). Human cancer natural history. Radiation induced immunodepression and post-operative radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2: 477–85Google Scholar
  36. 36.
    Clarke R, Brunner N, Thompson EW et al. (1989) Progression of human breast cancer cells from hormonal dependent to independent growth both in vitro and in vivo. Proc Nat Acad Sci USA. 86: 3649–53CrossRefPubMedGoogle Scholar
  37. 37.
    Tubiana M, Péjovic MH, Koscielny S et al. (1989) Growth rate, kinectics of tumor cell proliferation and long-term outcome in human breast cancer. Int. J. Cancer. 44: 17–22CrossRefPubMedGoogle Scholar
  38. 38.
    Van’t Veer LJ, Dai H, van de Vijver MJ (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature. 415: 530–6CrossRefGoogle Scholar
  39. 39.
    Van de Vijver MJ, He YD, Van’t Veer LJ et al. (2002) A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347: 1999–2009CrossRefPubMedGoogle Scholar
  40. 40.
    Weiglt B, Perterse JL, Van’t Veer L.J (2005) Breast cancer metastasis: markers and models. Nature Reviews Cancer. 5: 591–602CrossRefGoogle Scholar
  41. 41.
    Wallgren A (2000) AdjuVan’t radiotherapy after breast conserving surgery for breast cancer. Contra. Eur J Cancer. 36: 1078–82CrossRefGoogle Scholar
  42. 42.
    Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple validation strategy. Lancet. 365: 488–92CrossRefPubMedGoogle Scholar
  43. 43.
    Sternsward J (1974) Decreased survival related to irradiation post-operatively in early operable breast cancer. Lancet 2: 1285–6CrossRefGoogle Scholar
  44. 44.
    Whelan TJ, Julian J, Wright J et al. (2000) Does locoregional radiation therapy improve survival in breast cancer? A meta-analysis. J Clin Oncol. 18: 1220–9PubMedGoogle Scholar
  45. 45.
    Sauer R (2000) AdjuVan’t radiotherapy after breast conserving surgery for breast cancer. Eur J Cancer. 36: 1073–8CrossRefPubMedGoogle Scholar
  46. 46.
    Tubiana M, Koscielny S (2005) Ľhistoire natuelle du cancer du sein. Implication par le dépistage et le traitement. Bull. Mem. Acad. Roy. Méd. Belg. 160: 367–84Google Scholar
  47. 47.
    Michaelson JS, Cheongsiatmoy JA, Dewey F et al. (2005) Spread of human cancer cells occurs with probabilities indicative of a nongenetic mechanism. Brit. J. Cancer. 93: 1244–9CrossRefPubMedGoogle Scholar
  48. 48.
    Fidler IJ, Kripke ML (1977) Metastatic results from preexisting vriant cells within a malignant tumor. Science. 197: 893–5CrossRefPubMedGoogle Scholar
  49. 49.
    Bjerkvig R, Tynes BB, Aboody KS et al. (2005) Opinion: the origin of the cancer stem cell: current controversies and new insights. Nature Reviews/Cancer. 5: 899–904CrossRefGoogle Scholar
  50. 50.
    Huntly BHP, Gilliland DG (2005) Leukemia stem cells and the evolution of cancer stem cell research. Nature Reviews/Cancer. 5: 311–21CrossRefGoogle Scholar
  51. 51.
    The Swedish Organised Service Screening Evaluation Group (2006). Reduction in breast cancer mortality from Organized Service Screening with mammography: 1. Further confirmation with extended data. 15: 45–51 et 52–56Google Scholar

Copyright information

© Springer-Veralg France, Paris 2007

Authors and Affiliations

  • M. Tubiana
    • 1
  • S. Koscielny
    • 2
  1. 1.ľinstitut Gustave-RoussyVillejuif
  2. 2.ľinstitut Gustave-RoussyVillejuif

Personalised recommendations